Go back to the Contents page.
Press Show to reveal the code chunks.
# Create a clipboard button on the rendered HTML page
source(here::here("clipboard.R")); clipboard
# Set seed for reproducibility
set.seed(1982)
# Set global options for all code chunks
knitr::opts_chunk$set(
# Disable messages printed by R code chunks
message = FALSE,
# Disable warnings printed by R code chunks
warning = FALSE,
# Show R code within code chunks in output
echo = TRUE,
# Include both R code and its results in output
include = TRUE,
# Evaluate R code chunks
eval = TRUE,
# Enable caching of R code chunks for faster rendering
cache = FALSE,
# Align figures in the center of the output
fig.align = "center",
# Enable retina display for high-resolution figures
retina = 2,
# Show errors in the output instead of stopping rendering
error = TRUE,
# Do not collapse code and output into a single block
collapse = FALSE
)
# Start the figure counter
fig_count <- 0
# Define the captioner function
captioner <- function(caption) {
fig_count <<- fig_count + 1
paste0("Figure ", fig_count, ": ", caption)
}
library(MetricGraph)
library(ggplot2)
library(reshape2)
library(plotly)
capture.output(
knitr::purl(here::here("functionality.Rmd"), output = here::here("functionality.R")),
file = here::here("purl_log.txt")
)
source(here::here("functionality.R"))
Finite element basis
functions on a metric graph
Let each edge \(e\in\mathcal{E}\) be
subdivided into \(n_{e}\geq 2\) regular
segments of length \(h_{e}\), and be
delimited by the nodes \(0 =
x_0^{e},x_1^{e},\dots,x_{n_{e}-1}^{e}, x_{n_{e}}^{e} =
\ell_{e}\). For each \(j =
1,\dots,n_{e}-1\), we consider the following standard hat basis
functions \[\begin{equation*}
\varphi_j^{e}(x)=\begin{cases}
1-\dfrac{|x_j^{e}-x|}{h_{e}},&\text{ if }x_{j-1}^{e}\leq
x\leq x_{j+1}^{e},\\
0,&\text{ otherwise}.
\end{cases}
\end{equation*}\] For each \(e\in\mathcal{E}\), the set of hat functions
\(\left\{\varphi_1^{e},\dots,\varphi_{n_{e}-1}^{e}\right\}\)
is a basis for the space \[\begin{equation*}
V_{h_{e}} = \left\{w\in H_0^1(e)\;\Big|\;\forall j =
0,1,\dots,n_{e}-1:w|_{[x_j^{e}, x_{j+1}^{e}]}\in\mathbb{P}^1\right\},
\end{equation*}\] where \(\mathbb{P}^1\) is the space of linear
functions on \([0,\ell_{e}]\). For each
vertex \(v\in\mathcal{V}\), we define
\[\begin{equation*}
\mathcal{N}_v = \left\{\bigcup_{e\in\left\{e\in\mathcal{E}_v: v =
x_0^e\right\}}[v,x_1^e]\right\}\bigcup\left\{\bigcup_{e\in\left\{e\in\mathcal{E}_v:
v = x^e_{n_e}\right\}}[x^e_{n_e-1},v]\right\},
\end{equation*}\] which is a star-shaped set with center at \(v\) and rays made of the segments
contiguous to \(v\). On \(\mathcal{N}_v\), we define the hat
functions as \[\begin{equation*}
\phi_v(x)=\begin{cases}
1-\dfrac{|x_v^{e}-x|}{h_{e}},&\text{ if
}x\in\mathcal{N}_v\cap e \text{ and }e\in\mathcal{E}_v,\\
0,&\text{ otherwise},
\end{cases}
\end{equation*}\] where \(x_v^e\) is either \(x_0^e\) or \(x_{n_e}^e\) depending on the edge direction
and its parameterization. See Arioli and Benzi
(2018) for more details. Figure 1 shows an illustration of the
basis function system \(\{\varphi_j^e,
\phi_v\}\) on the tadpole graph (in black). Standard hat
functions associated with internal edge nodes are shown in blue, while
special vertex-centered functions are highlighted in red.
For an additional illustration, go to the Basis page.
graph <- gets.graph.tadpole(h = 1/4)
graph_to_get_loc <- gets.graph.tadpole(h = 1/40)
loc <- graph_to_get_loc$get_mesh_locations()
A <- as.matrix(graph$fem_basis(loc))
A <- apply(A, 2, function(x) plotting.order(x, graph_to_get_loc))
A <- rbind(A, rep(NA, ncol(A))) # Add a row of NAs for the plotting
x <- graph_to_get_loc$mesh$V[, 1]
y <- graph_to_get_loc$mesh$V[, 2]
x <- c(plotting.order(x, graph_to_get_loc), NA)
y <- c(plotting.order(y, graph_to_get_loc), NA)
x_range <- range(x, na.rm = TRUE)
y_range <- range(y, na.rm = TRUE)
z_range <- c(0,1)
# Start plot
p <- plot_ly() |>
add_trace(x = rep(x, times = graph$nV),
y = rep(y, times = graph$nV),
z = as.vector(A[, 1:graph$nV]),
type = "scatter3d",
mode = "lines",
line = list(color = "red", width = 3),
showlegend = FALSE) |>
add_trace(x = rep(x, times = ncol(A) - graph$nV),
y = rep(y, times = ncol(A) - graph$nV),
z = as.vector(A[, (graph$nV+1):ncol(A)]),
type = "scatter3d",
mode = "lines",
line = list(color = "blue", width = 3),
showlegend = FALSE) |>
add_trace(x = rep(x, each = 3),
y = rep(y, each = 3),
z = unlist(lapply(apply(A, 1, max, na.rm = TRUE), function(zj) c(0, zj, NA))),
type = "scatter3d",
mode = "lines",
line = list(color = "gray", width = 0.5),
showlegend = FALSE) |>
add_trace(x = x,
y = y,
z = x*0,
type = "scatter3d",
mode = "lines",
line = list(color = "black", width = 3),
showlegend = FALSE) |>
add_trace(x = rep(x, times = graph$nV),
y = rep(y, times = graph$nV),
z = c(replace(rep(NA, nrow(A)), 1:11, 0),
replace(rep(NA, nrow(A)), c(31:51, 111:121), 0)),
type = "scatter3d",
mode = "lines",
line = list(color = "green", width = 3),
showlegend = FALSE) |>
layout(scene = global.scene.setter(x_range, y_range, z_range, z_aspectratio = 1))
p
Having introduced the system of basis functions \(\{\varphi_j^e, \phi_v\}\), which will be
referred to as \(\{\psi_j\}_{j=1}^{N_h}\), we can now define
the finite element space \(V_h\subset
H^1(\Gamma)\) as \(V_h =
\left(\bigoplus_{e\in\mathcal{E}} V_{h_e}\right)\bigoplus V_v\),
where \(V_v =
\text{span}\left(\{\phi_v:v\in\mathcal{V}\}\right)\) and \(\dim\left(V_h\right)\) is given by \(N_h = |\mathcal{V}| +
\sum_{e\in\mathcal{E}}n_e\).
Eigenfunctions and
eigenvalues on the tadpole graph
Let \(\Gamma_T =
(\mathcal{V},\mathcal{E})\) characterize the tadpole graph with
\(\mathcal{V}= \{v_1,v_2\}\) and \(\mathcal{E}= \{e_1,e_2\}\). The left edge
\(e_1\) has length 1 and the circular
edge \(e_2\) has length 2. A point on
\(e_1\) is parameterized via \(s=\left(e_1, t\right)\) for \(t \in[0,1]\) and a point on \(e_2\) via \(s=\left(e_2, t\right)\) for \(t\in[0,2]\). One can verify that \(-\Delta_\Gamma\) has eigenvalues \(0,\left\{(i \pi / 2)^2\right\}_{i \in
\mathbb{N}}\) and \(\left\{(i \pi /
2)^2\right\}_{2 i \in \mathbb{N}}\) with corresponding
eigenfunctions \(\phi_0\), \(\left\{\phi_i\right\}_{i \in \mathbb{N}}\),
and \(\left\{\psi_i\right\}_{2 i \in
\mathbb{N}}\) given by \(\phi_0(s)=1 /
\sqrt{3}\) and \[\begin{equation*}
\phi_i(s)=C_{\phi, i}\begin{cases}
-2 \sin \left(\dfrac{i\pi}{2}\right) \cos \left(\dfrac{i \pi
s}{2}\right), & s \in e_1, \\
\sin \left(\dfrac{i \pi s}{2}\right), & s \in e_2,
\end{cases},
\quad
\psi_i(s)=\dfrac{\sqrt{3}}{\sqrt{2}} \begin{cases}
(-1)^{i / 2} \cos \left(\dfrac{i \pi s}{2}\right), & s \in e_1,
\\
\cos \left(\dfrac{i \pi s}{2}\right), & s \in e_2,
\end{cases},
\end{equation*}\] where \(C_{\phi,
i}=1\) if \(i\) is even and
\(C_{\phi, i}=1 / \sqrt{3}\) otherwise.
Moreover, these functions form an orthonormal basis for \(L_2(\Gamma_T)\).
graph <- gets.graph.tadpole(h = 0.02)
eigenpairs <- gets.eigen.params(N_finite = 10, kappa = 1, alpha = 0.5, graph)
EIGENFUN <- eigenpairs$EIGENFUN
EIGENVAL <- eigenpairs$EIGENVAL
INDEX <- eigenpairs$INDEX
graph.plotter.3d(graph, INDEX, EIGENVAL, EIGENFUN)
Projection onto a fine
space-time mesh
Temporal piecewise
projection
The piecewise constant projection \(U_{\text{piecewise}}(t^*_\ell)\) of the
approximated values \(U_{\text{approx}}(t_k)\), defined on a
coarse time grid \(\{t_k\}_{k=0}^{N}\),
onto a finer grid \(\{t^*_\ell\}_{\ell=0}^{M}\), is given
by
\[\begin{equation}
U_{\text{piecewise}}(t^*_\ell) =
\begin{cases}
U_{\text{approx}}(t_0), & \text{if } t^*_\ell = 0 \\\\
U_{\text{approx}}(t_k), & \text{if } t^*_\ell \in (t_{k-1}, t_k],
\quad \text{for } k = 1, \dots, N.
\end{cases}
\end{equation}\]
This defines a function that is constant on each interval \((t_{k-1}, t_k]\), and takes the value of
the approximation at the right endpoint \(t_k\) of the interval.
See the Fuctionality
page for the implementation of the function
construct_piecewise_projection()
that performs this
operation.
Spatial
projection
A function \(U_{\text{coarse}}(s)\)
defined on a coarse mesh with \(N_{h}\)
nodes can be projected onto a fine mesh with \(N_{h_{\text{ok}}}\) nodes by doing \(U_{\text{fine}}(s) = \boldsymbol{\Psi}
U_{\text{coarse}}(s)\), where \(\boldsymbol{\Psi}\) is a matrix with
entries \(\boldsymbol{\Psi}_{ij}=\psi^j_h(s_i)\) for
\(j=1\dots, N_h\) and \(i = 1,\dots N_{h_{\text{ok}}}\).
# Parameters
T_final <- 2
kappa <- 15
N_finite = 4 # choose even
adjusted_N_finite <- N_finite + N_finite/2 + 1
# Coefficients for u_0 and f
coeff_U_0 <- 50*(1:adjusted_N_finite)^-1
coeff_U_0[-5] <- 0
coeff_FF <- rep(0, adjusted_N_finite)
coeff_FF[7] <- 10
AAA = 1
OMEGA = pi
# Overkill parameters
overkill_time_step <- 0.02
overkill_h <- 0.02
# Finest time and space mesh
overkill_time_seq <- seq(0, T_final, length.out = ((T_final - 0) / overkill_time_step + 1))
overkill_graph <- gets.graph.tadpole(h = overkill_h)
# Compute the weights on the finest mesh
overkill_graph$compute_fem() # This is needed to compute the weights
overkill_weights <- overkill_graph$mesh$weights
alpha <- 0.5 # from 0.5 to 2
beta <- alpha / 2
# Compute the eigenvalues and eigenfunctions on the finest mesh
overkill_eigen_params <- gets.eigen.params(N_finite = N_finite, kappa = kappa, alpha = alpha, graph = overkill_graph)
EIGENVAL_ALPHA <- overkill_eigen_params$EIGENVAL_ALPHA # Eigenvalues (they are independent of the meshes)
overkill_EIGENFUN <- overkill_eigen_params$EIGENFUN # Eigenfunctions on the finest mesh
# Compute the true solution on the finest mesh
overkill_U_true <- overkill_EIGENFUN %*%
outer(1:length(coeff_U_0),
1:length(overkill_time_seq),
function(i, j) (coeff_U_0[i] + coeff_FF[i] * G_sin(t = overkill_time_seq[j], A = AAA, lambda_j_alpha_half = EIGENVAL_ALPHA[i], omega = OMEGA)) * exp(-EIGENVAL_ALPHA[i] * overkill_time_seq[j]))
h <- 0.2
time_step <- 0.2
m <- 1
graph <- gets.graph.tadpole(h = h)
graph$compute_fem()
G <- graph$mesh$G
C <- graph$mesh$C
L <- kappa^2*C + G
eigen_params <- gets.eigen.params(N_finite = N_finite, kappa = kappa, alpha = alpha, graph = graph)
EIGENFUN <- eigen_params$EIGENFUN
U_0 <- EIGENFUN %*% coeff_U_0 # Compute U_0 on the current mesh
A <- graph$fem_basis(overkill_graph$get_mesh_locations())
time_seq <- seq(0, T_final, length.out = ((T_final - 0) / time_step + 1))
my_op_frac <- my.fractional.operators.frac(L, beta, C, scale.factor = kappa^2, m = m, time_step)
INT_BASIS_EIGEN <- t(overkill_EIGENFUN) %*% overkill_graph$mesh$C %*% A
# Compute matrix F with columns F^k
FF_approx <- t(INT_BASIS_EIGEN) %*%
outer(1:length(coeff_FF),
1:length(time_seq),
function(i, j) coeff_FF[i] * g_sin(r = time_seq[j], A = AAA, omega = OMEGA))
U_approx <- matrix(NA, nrow = nrow(C), ncol = length(time_seq))
U_approx[, 1] <- U_0
for (k in 1:(length(time_seq) - 1)) {
U_approx[, k + 1] <- as.matrix(my.solver.frac(my_op_frac, my_op_frac$C %*% U_approx[, k] + time_step * FF_approx[, k + 1]))
}
projected_U_approx <- A %*% U_approx
projected_U_piecewise <- construct_piecewise_projection(projected_U_approx, time_seq, overkill_time_seq)
graph.plotter.3d(overkill_graph, overkill_time_seq, overkill_time_seq, overkill_U_true, projected_U_piecewise)
graph.plotter.3d(graph, time_seq, time_seq, U_approx)
References
grateful::cite_packages(output = "paragraph", out.dir = ".")
We used R version 4.5.0 (R Core Team
2025) and the following R packages: gsignal v. 0.3.7 (Van Boxtel, G.J.M., et al. 2021), here v. 1.0.1
(Müller 2020), htmltools v. 0.5.8.1 (Cheng et al. 2024), knitr v. 1.50 (Xie 2014, 2015, 2025), Matrix v. 1.7.3 (Bates, Maechler, and Jagan 2025), MetricGraph
v. 1.5.0.9000 (Bolin, Simas, and Wallin 2023a,
2023b, 2024, 2025; Bolin et al. 2024), patchwork v. 1.3.1 (Pedersen 2025), plotly v. 4.10.4 (Sievert 2020), RColorBrewer v. 1.1.3 (Neuwirth 2022), renv v. 1.0.7 (Ushey and Wickham 2024), reshape2 v. 1.4.4
(Wickham 2007), rmarkdown v. 2.29 (Xie, Allaire, and Grolemund 2018; Xie, Dervieux, and
Riederer 2020; Allaire et al. 2024), rSPDE v. 2.5.1.9000 (Bolin and Kirchner 2020; Bolin and Simas 2023; Bolin,
Simas, and Xiong 2024), scales v. 1.4.0 (Wickham, Pedersen, and Seidel 2025), slackr v.
3.4.0 (Kaye et al. 2025), tidyverse v.
2.0.0 (Wickham et al. 2019), viridisLite
v. 0.4.2 (Garnier et al. 2023),
xaringanExtra v. 0.8.0 (Aden-Buie and Warkentin
2024).
Allaire, JJ, Yihui Xie, Christophe Dervieux, Jonathan McPherson, Javier
Luraschi, Kevin Ushey, Aron Atkins, et al. 2024.
rmarkdown: Dynamic Documents for r.
https://github.com/rstudio/rmarkdown.
Arioli, Mario, and Michele Benzi. 2018. “A Finite Element Method
for Quantum Graphs.” IMA Journal of Numerical Analysis
38 (3): 1119–63.
Bates, Douglas, Martin Maechler, and Mikael Jagan. 2025.
Matrix: Sparse and Dense Matrix Classes and
Methods.
https://doi.org/10.32614/CRAN.package.Matrix.
Bolin, David, and Kristin Kirchner. 2020.
“The Rational
SPDE Approach for Gaussian Random Fields with
General Smoothness.” Journal of Computational and Graphical
Statistics 29 (2): 274–85.
https://doi.org/10.1080/10618600.2019.1665537.
Bolin, David, Mihály Kovács, Vivek Kumar, and Alexandre B. Simas. 2024.
“Regularity and Numerical Approximation of Fractional Elliptic
Differential Equations on Compact Metric Graphs.” Mathematics
of Computation 93 (349): 2439–72.
https://doi.org/10.1090/mcom/3929.
Bolin, David, and Alexandre B. Simas. 2023.
rSPDE: Rational Approximations of Fractional
Stochastic Partial Differential Equations.
https://CRAN.R-project.org/package=rSPDE.
Bolin, David, Alexandre B. Simas, and Jonas Wallin. 2023a.
MetricGraph: Random Fields on Metric Graphs.
https://CRAN.R-project.org/package=MetricGraph.
———. 2023b.
“Statistical Inference for Gaussian Whittle-Matérn
Fields on Metric Graphs.” arXiv Preprint
arXiv:2304.10372.
https://doi.org/10.48550/arXiv.2304.10372.
———. 2024.
“Gaussian Whittle-Matérn Fields on Metric
Graphs.” Bernoulli 30 (2): 1611–39.
https://doi.org/10.3150/23-BEJ1647.
———. 2025.
“Markov Properties of Gaussian Random Fields on Compact
Metric Graphs.” Bernoulli.
https://doi.org/10.48550/arXiv.2304.03190.
Bolin, David, Alexandre B. Simas, and Zhen Xiong. 2024.
“Covariance-Based Rational Approximations of Fractional SPDEs for
Computationally Efficient Bayesian Inference.” Journal of
Computational and Graphical Statistics 33 (1): 64–74.
https://doi.org/10.1080/10618600.2023.2231051.
Garnier, Simon, Ross, Noam, Rudis, Robert, Camargo, et al. 2023.
viridis(Lite) - Colorblind-Friendly
Color Maps for r.
https://doi.org/10.5281/zenodo.4678327.
Kaye, Matt, Bob Rudis, Andrie de Vries, and Jonathan Sidi. 2025.
slackr: Send Messages, Images, r Objects
and Files to “Slack” Channels/Users.
https://github.com/mrkaye97/slackr.
Müller, Kirill. 2020.
here: A Simpler
Way to Find Your Files.
https://doi.org/10.32614/CRAN.package.here.
Neuwirth, Erich. 2022.
RColorBrewer: ColorBrewer
Palettes.
https://doi.org/10.32614/CRAN.package.RColorBrewer.
Pedersen, Thomas Lin. 2025.
patchwork:
The Composer of Plots.
https://doi.org/10.32614/CRAN.package.patchwork.
R Core Team. 2025.
R: A Language and Environment for
Statistical Computing. Vienna, Austria: R Foundation for
Statistical Computing.
https://www.R-project.org/.
Sievert, Carson. 2020.
Interactive Web-Based Data Visualization with
r, Plotly, and Shiny. Chapman; Hall/CRC.
https://plotly-r.com.
Ushey, Kevin, and Hadley Wickham. 2024.
renv: Project Environments.
https://doi.org/10.32614/CRAN.package.renv.
Van Boxtel, G.J.M., et al. 2021.
gsignal: Signal Processing.
https://github.com/gjmvanboxtel/gsignal.
Wickham, Hadley. 2007.
“Reshaping Data with the reshape Package.” Journal of
Statistical Software 21 (12): 1–20.
http://www.jstatsoft.org/v21/i12/.
Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy
D’Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019.
“Welcome to the tidyverse.”
Journal of Open Source Software 4 (43): 1686.
https://doi.org/10.21105/joss.01686.
Wickham, Hadley, Thomas Lin Pedersen, and Dana Seidel. 2025.
scales: Scale Functions for Visualization.
https://doi.org/10.32614/CRAN.package.scales.
Xie, Yihui. 2014. “knitr: A
Comprehensive Tool for Reproducible Research in R.”
In Implementing Reproducible Computational Research, edited by
Victoria Stodden, Friedrich Leisch, and Roger D. Peng. Chapman;
Hall/CRC.
———. 2015.
Dynamic Documents with R and Knitr. 2nd
ed. Boca Raton, Florida: Chapman; Hall/CRC.
https://yihui.org/knitr/.
———. 2025.
knitr: A General-Purpose
Package for Dynamic Report Generation in R.
https://yihui.org/knitr/.
Xie, Yihui, J. J. Allaire, and Garrett Grolemund. 2018.
R Markdown:
The Definitive Guide. Boca Raton, Florida: Chapman; Hall/CRC.
https://bookdown.org/yihui/rmarkdown.
Xie, Yihui, Christophe Dervieux, and Emily Riederer. 2020.
R
Markdown Cookbook. Boca Raton, Florida: Chapman; Hall/CRC.
https://bookdown.org/yihui/rmarkdown-cookbook.
LS0tCnRpdGxlOiAiUHJlbGltaW5hcmllcyIKZGF0ZTogIkxhc3QgbW9kaWZpZWQ6IGByIGZvcm1hdChTeXMudGltZSgpLCAnJWQtJW0tJVkuJylgIgpvdXRwdXQ6CiAgaHRtbF9kb2N1bWVudDoKICAgIG1hdGhqYXg6ICJodHRwczovL2Nkbi5qc2RlbGl2ci5uZXQvbnBtL21hdGhqYXhAMy9lczUvdGV4LW1tbC1jaHRtbC5qcyIKICAgIGhpZ2hsaWdodDogcHlnbWVudHMKICAgIHRoZW1lOiBmbGF0bHkKICAgIGNvZGVfZm9sZGluZzogaGlkZSAjIGNsYXNzLnNvdXJjZSA9ICJmb2xkLWhpZGUiIHRvIGhpZGUgY29kZSBhbmQgYWRkIGEgYnV0dG9uIHRvIHNob3cgaXQKICAgIGRmX3ByaW50OiBwYWdlZAogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6CiAgICAgIGNvbGxhcHNlZDogdHJ1ZQogICAgICBzbW9vdGhfc2Nyb2xsOiB0cnVlCiAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUKICAgIGZpZ19jYXB0aW9uOiB0cnVlCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlCiAgICBjc3M6IHZpc3VhbC5jc3MKYWx3YXlzX2FsbG93X2h0bWw6IHRydWUKYmlibGlvZ3JhcGh5OiAKICAtIHJlZmVyZW5jZXMuYmliCiAgLSBncmF0ZWZ1bC1yZWZzLmJpYgpoZWFkZXItaW5jbHVkZXM6CiAgLSBcbmV3Y29tbWFuZHtcYXJ9e1xtYXRoYmJ7Un19CiAgLSBcbmV3Y29tbWFuZHtcbGxhdn1bMV17XGxlZnRceyMxXHJpZ2h0XH19CiAgLSBcbmV3Y29tbWFuZHtccGFyZX1bMV17XGxlZnQoIzFccmlnaHQpfQogIC0gXG5ld2NvbW1hbmR7XE5jYWx9e1xtYXRoY2Fse059fQogIC0gXG5ld2NvbW1hbmR7XFZjYWx9e1xtYXRoY2Fse1Z9fQogIC0gXG5ld2NvbW1hbmR7XEVjYWx9e1xtYXRoY2Fse0V9fQogIC0gXG5ld2NvbW1hbmR7XFdjYWx9e1xtYXRoY2Fse1d9fQotLS0KCkdvIGJhY2sgdG8gdGhlIFtDb250ZW50c10oYWJvdXQuaHRtbCkgcGFnZS4KCjxkaXYgc3R5bGU9ImNvbG9yOiAjMmMzZTUwOyB0ZXh0LWFsaWduOiByaWdodDsiPgoqKioqKioqKiAgCjxzdHJvbmc+UHJlc3MgU2hvdyB0byByZXZlYWwgdGhlIGNvZGUgY2h1bmtzLjwvc3Ryb25nPiAgCgoqKioqKioqKgo8L2Rpdj4KCgpgYGB7cn0KIyBDcmVhdGUgYSBjbGlwYm9hcmQgYnV0dG9uIG9uIHRoZSByZW5kZXJlZCBIVE1MIHBhZ2UKc291cmNlKGhlcmU6OmhlcmUoImNsaXBib2FyZC5SIikpOyBjbGlwYm9hcmQKIyBTZXQgc2VlZCBmb3IgcmVwcm9kdWNpYmlsaXR5CnNldC5zZWVkKDE5ODIpIAojIFNldCBnbG9iYWwgb3B0aW9ucyBmb3IgYWxsIGNvZGUgY2h1bmtzCmtuaXRyOjpvcHRzX2NodW5rJHNldCgKICAjIERpc2FibGUgbWVzc2FnZXMgcHJpbnRlZCBieSBSIGNvZGUgY2h1bmtzCiAgbWVzc2FnZSA9IEZBTFNFLCAgICAKICAjIERpc2FibGUgd2FybmluZ3MgcHJpbnRlZCBieSBSIGNvZGUgY2h1bmtzCiAgd2FybmluZyA9IEZBTFNFLCAgICAKICAjIFNob3cgUiBjb2RlIHdpdGhpbiBjb2RlIGNodW5rcyBpbiBvdXRwdXQKICBlY2hvID0gVFJVRSwgICAgICAgIAogICMgSW5jbHVkZSBib3RoIFIgY29kZSBhbmQgaXRzIHJlc3VsdHMgaW4gb3V0cHV0CiAgaW5jbHVkZSA9IFRSVUUsICAgICAKICAjIEV2YWx1YXRlIFIgY29kZSBjaHVua3MKICBldmFsID0gVFJVRSwgICAgICAgCiAgIyBFbmFibGUgY2FjaGluZyBvZiBSIGNvZGUgY2h1bmtzIGZvciBmYXN0ZXIgcmVuZGVyaW5nCiAgY2FjaGUgPSBGQUxTRSwgICAgICAKICAjIEFsaWduIGZpZ3VyZXMgaW4gdGhlIGNlbnRlciBvZiB0aGUgb3V0cHV0CiAgZmlnLmFsaWduID0gImNlbnRlciIsCiAgIyBFbmFibGUgcmV0aW5hIGRpc3BsYXkgZm9yIGhpZ2gtcmVzb2x1dGlvbiBmaWd1cmVzCiAgcmV0aW5hID0gMiwKICAjIFNob3cgZXJyb3JzIGluIHRoZSBvdXRwdXQgaW5zdGVhZCBvZiBzdG9wcGluZyByZW5kZXJpbmcKICBlcnJvciA9IFRSVUUsCiAgIyBEbyBub3QgY29sbGFwc2UgY29kZSBhbmQgb3V0cHV0IGludG8gYSBzaW5nbGUgYmxvY2sKICBjb2xsYXBzZSA9IEZBTFNFCikKIyBTdGFydCB0aGUgZmlndXJlIGNvdW50ZXIKZmlnX2NvdW50IDwtIDAKIyBEZWZpbmUgdGhlIGNhcHRpb25lciBmdW5jdGlvbgpjYXB0aW9uZXIgPC0gZnVuY3Rpb24oY2FwdGlvbikgewogIGZpZ19jb3VudCA8PC0gZmlnX2NvdW50ICsgMQogIHBhc3RlMCgiRmlndXJlICIsIGZpZ19jb3VudCwgIjogIiwgY2FwdGlvbikKfQpgYGAKCmBgYHtyfQpsaWJyYXJ5KE1ldHJpY0dyYXBoKQpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkocmVzaGFwZTIpCmxpYnJhcnkocGxvdGx5KQpgYGAKCgpgYGB7cn0KY2FwdHVyZS5vdXRwdXQoCiAga25pdHI6OnB1cmwoaGVyZTo6aGVyZSgiZnVuY3Rpb25hbGl0eS5SbWQiKSwgb3V0cHV0ID0gaGVyZTo6aGVyZSgiZnVuY3Rpb25hbGl0eS5SIikpLAogIGZpbGUgPSBoZXJlOjpoZXJlKCJwdXJsX2xvZy50eHQiKQopCnNvdXJjZShoZXJlOjpoZXJlKCJmdW5jdGlvbmFsaXR5LlIiKSkKYGBgCgoKIyMgRmluaXRlIGVsZW1lbnQgYmFzaXMgZnVuY3Rpb25zIG9uIGEgbWV0cmljIGdyYXBoIHsjZmVtLWJhc2lzfQoKTGV0IGVhY2ggZWRnZSAkZVxpblxFY2FsJCBiZSBzdWJkaXZpZGVkIGludG8gJG5fe2V9XGdlcSAyJCByZWd1bGFyIHNlZ21lbnRzIG9mIGxlbmd0aCAkaF97ZX0kLCBhbmQgYmUgZGVsaW1pdGVkIGJ5IHRoZSBub2RlcyAkMCA9IHhfMF57ZX0seF8xXntlfSxcZG90cyx4X3tuX3tlfS0xfV57ZX0sIHhfe25fe2V9fV57ZX0gPSBcZWxsX3tlfSQuIEZvciBlYWNoICRqID0gMSxcZG90cyxuX3tlfS0xJCwgd2UgY29uc2lkZXIgdGhlIGZvbGxvd2luZyBzdGFuZGFyZCBoYXQgYmFzaXMgZnVuY3Rpb25zIApcYmVnaW57ZXF1YXRpb24qfQogICAgXHZhcnBoaV9qXntlfSh4KT1cYmVnaW57Y2FzZXN9CiAgICAgICAgMS1cZGZyYWN7fHhfal57ZX0teHx9e2hfe2V9fSwmXHRleHR7IGlmIH14X3tqLTF9XntlfVxsZXEgeFxsZXEgeF97aisxfV57ZX0sXFwKICAgICAgICAwLCZcdGV4dHsgb3RoZXJ3aXNlfS4KICAgIFxlbmR7Y2FzZXN9ClxlbmR7ZXF1YXRpb24qfQpGb3IgZWFjaCAkZVxpblxFY2FsJCwgdGhlIHNldCBvZiBoYXQgZnVuY3Rpb25zICRcbGxhdntcdmFycGhpXzFee2V9LFxkb3RzLFx2YXJwaGlfe25fe2V9LTF9XntlfX0kIGlzIGEgYmFzaXMgZm9yIHRoZSBzcGFjZQpcYmVnaW57ZXF1YXRpb24qfQogICAgVl97aF97ZX19ID0gXGxsYXZ7d1xpbiBIXzBeMShlKVw7XEJpZ3xcO1xmb3JhbGwgaiA9IDAsMSxcZG90cyxuX3tlfS0xOnd8X3tbeF9qXntlfSwgeF97aisxfV57ZX1dfVxpblxtYXRoYmJ7UH1eMX0sClxlbmR7ZXF1YXRpb24qfQp3aGVyZSAkXG1hdGhiYntQfV4xJCBpcyB0aGUgc3BhY2Ugb2YgbGluZWFyIGZ1bmN0aW9ucyBvbiAkWzAsXGVsbF97ZX1dJC4gRm9yIGVhY2ggdmVydGV4ICR2XGluXFZjYWwkLCB3ZSBkZWZpbmUKXGJlZ2lue2VxdWF0aW9uKn0KICAgIFxOY2FsX3YgPSBcbGxhdntcYmlnY3VwX3tlXGluXGxsYXZ7ZVxpblxFY2FsX3Y6IHYgPSB4XzBeZX19W3YseF8xXmVdfVxiaWdjdXBcbGxhdntcYmlnY3VwX3tlXGluXGxsYXZ7ZVxpblxFY2FsX3Y6IHYgPSB4XmVfe25fZX19fVt4XmVfe25fZS0xfSx2XX0sClxlbmR7ZXF1YXRpb24qfQp3aGljaCBpcyBhIHN0YXItc2hhcGVkIHNldCB3aXRoIGNlbnRlciBhdCAkdiQgYW5kIHJheXMgbWFkZSBvZiB0aGUgc2VnbWVudHMgY29udGlndW91cyB0byAkdiQuIE9uICRcbWF0aGNhbHtOfV92JCwgd2UgZGVmaW5lIHRoZSBoYXQgZnVuY3Rpb25zIGFzClxiZWdpbntlcXVhdGlvbip9CiAgICBccGhpX3YoeCk9XGJlZ2lue2Nhc2VzfQogICAgICAgIDEtXGRmcmFje3x4X3Zee2V9LXh8fXtoX3tlfX0sJlx0ZXh0eyBpZiB9eFxpblxtYXRoY2Fse059X3ZcY2FwIGUgXHRleHR7IGFuZCB9ZVxpblxFY2FsX3YsXFwKICAgICAgICAwLCZcdGV4dHsgb3RoZXJ3aXNlfSwKICAgIFxlbmR7Y2FzZXN9ClxlbmR7ZXF1YXRpb24qfQp3aGVyZSAkeF92XmUkIGlzIGVpdGhlciAkeF8wXmUkIG9yICR4X3tuX2V9XmUkIGRlcGVuZGluZyBvbiB0aGUgZWRnZSBkaXJlY3Rpb24gYW5kIGl0cyBwYXJhbWV0ZXJpemF0aW9uLiBTZWUgQGFyaW9saTIwMThmaW5pdGUgZm9yIG1vcmUgZGV0YWlscy4gRmlndXJlIDEgc2hvd3MgYW4gaWxsdXN0cmF0aW9uIG9mIHRoZSBiYXNpcyBmdW5jdGlvbiBzeXN0ZW0gJFx7XHZhcnBoaV9qXmUsIFxwaGlfdlx9JCBvbiB0aGUgdGFkcG9sZSBncmFwaCAoaW4gYmxhY2spLiBTdGFuZGFyZCBoYXQgZnVuY3Rpb25zIGFzc29jaWF0ZWQgd2l0aCBpbnRlcm5hbCBlZGdlIG5vZGVzIGFyZSBzaG93biBpbiBibHVlLCB3aGlsZSBzcGVjaWFsIHZlcnRleC1jZW50ZXJlZCBmdW5jdGlvbnMgYXJlIGhpZ2hsaWdodGVkIGluIHJlZC4KCgpGb3IgYW4gYWRkaXRpb25hbCBpbGx1c3RyYXRpb24sIGdvIHRvIHRoZSBbQmFzaXNdKGJhc2lzLmh0bWwjYmFzaXNmKSBwYWdlLgoKYGBge3IsIGZpZy5oZWlnaHQgPSA2LCBvdXQud2lkdGggPSAiMTAwJSIsIGZpZy5jYXAgPSBjYXB0aW9uZXIoIklsbHVzdHJhdGlvbiBvZiB0aGUgc3lzdGVtIG9mIGJhc2lzIGZ1bmN0aW9ucyAkXFx7XFx2YXJwaGlfal5lLCBcXHBoaV92XFx9JCBvbiB0aGUgdGFkcG9sZSBncmFwaC4gTm90aWNlIHRoYXQgdGhlIHNldHMgJFxcTmNhbF97dn0kIGFyZSBkZXBpY3RlZCBpbiBncmVlbiBhbmQgdGhlaXIgY29ycmVzcG9uZGluZyBiYXNpcyBmdW5jdGlvbnMgYXJlIHNob3duIGluIHJlZC4iKX0KZ3JhcGggPC0gZ2V0cy5ncmFwaC50YWRwb2xlKGggPSAxLzQpCmdyYXBoX3RvX2dldF9sb2MgPC0gZ2V0cy5ncmFwaC50YWRwb2xlKGggPSAxLzQwKQpsb2MgPC0gZ3JhcGhfdG9fZ2V0X2xvYyRnZXRfbWVzaF9sb2NhdGlvbnMoKQoKCkEgPC0gYXMubWF0cml4KGdyYXBoJGZlbV9iYXNpcyhsb2MpKQpBIDwtIGFwcGx5KEEsIDIsIGZ1bmN0aW9uKHgpIHBsb3R0aW5nLm9yZGVyKHgsIGdyYXBoX3RvX2dldF9sb2MpKQpBIDwtIHJiaW5kKEEsIHJlcChOQSwgbmNvbChBKSkpICMgQWRkIGEgcm93IG9mIE5BcyBmb3IgdGhlIHBsb3R0aW5nCgp4IDwtIGdyYXBoX3RvX2dldF9sb2MkbWVzaCRWWywgMV0KeSA8LSBncmFwaF90b19nZXRfbG9jJG1lc2gkVlssIDJdCnggPC0gYyhwbG90dGluZy5vcmRlcih4LCBncmFwaF90b19nZXRfbG9jKSwgTkEpCnkgPC0gYyhwbG90dGluZy5vcmRlcih5LCBncmFwaF90b19nZXRfbG9jKSwgTkEpCgp4X3JhbmdlIDwtIHJhbmdlKHgsIG5hLnJtID0gVFJVRSkKeV9yYW5nZSA8LSByYW5nZSh5LCBuYS5ybSA9IFRSVUUpCnpfcmFuZ2UgPC0gYygwLDEpCgojIFN0YXJ0IHBsb3QKcCA8LSBwbG90X2x5KCkgfD4gCiAgYWRkX3RyYWNlKHggPSByZXAoeCwgdGltZXMgPSBncmFwaCRuViksIAogICAgICAgICAgICB5ID0gcmVwKHksIHRpbWVzID0gZ3JhcGgkblYpLCAKICAgICAgICAgICAgeiA9IGFzLnZlY3RvcihBWywgMTpncmFwaCRuVl0pLCAKICAgICAgICAgICAgdHlwZSA9ICJzY2F0dGVyM2QiLCAKICAgICAgICAgICAgbW9kZSA9ICJsaW5lcyIsCiAgICAgICAgICAgIGxpbmUgPSBsaXN0KGNvbG9yID0gInJlZCIsIHdpZHRoID0gMyksIAogICAgICAgICAgICBzaG93bGVnZW5kID0gRkFMU0UpIHw+CiAgYWRkX3RyYWNlKHggPSByZXAoeCwgdGltZXMgPSBuY29sKEEpIC0gZ3JhcGgkblYpLCAKICAgICAgICAgICAgeSA9IHJlcCh5LCB0aW1lcyA9IG5jb2woQSkgLSBncmFwaCRuViksIAogICAgICAgICAgICB6ID0gYXMudmVjdG9yKEFbLCAoZ3JhcGgkblYrMSk6bmNvbChBKV0pLCAKICAgICAgICAgICAgdHlwZSA9ICJzY2F0dGVyM2QiLAogICAgICAgICAgICBtb2RlID0gImxpbmVzIiwgCiAgICAgICAgICAgIGxpbmUgPSBsaXN0KGNvbG9yID0gImJsdWUiLCB3aWR0aCA9IDMpLCAKICAgICAgICAgICAgc2hvd2xlZ2VuZCA9IEZBTFNFKSB8PgogIGFkZF90cmFjZSh4ID0gcmVwKHgsIGVhY2ggPSAzKSwgCiAgICAgICAgICAgIHkgPSByZXAoeSwgZWFjaCA9IDMpLCAKICAgICAgICAgICAgeiA9IHVubGlzdChsYXBwbHkoYXBwbHkoQSwgMSwgbWF4LCBuYS5ybSA9IFRSVUUpLCBmdW5jdGlvbih6aikgYygwLCB6aiwgTkEpKSksCiAgICAgICAgICAgIHR5cGUgPSAic2NhdHRlcjNkIiwgCiAgICAgICAgICAgIG1vZGUgPSAibGluZXMiLAogICAgICAgICAgICBsaW5lID0gbGlzdChjb2xvciA9ICJncmF5Iiwgd2lkdGggPSAwLjUpLAogICAgICAgICAgICBzaG93bGVnZW5kID0gRkFMU0UpIHw+CiAgYWRkX3RyYWNlKHggPSB4LCAKICAgICAgICAgICAgeSA9IHksIAogICAgICAgICAgICB6ID0geCowLCAKICAgICAgICAgICAgdHlwZSA9ICJzY2F0dGVyM2QiLAogICAgICAgICAgICBtb2RlID0gImxpbmVzIiwgIAogICAgICAgICAgICBsaW5lID0gbGlzdChjb2xvciA9ICJibGFjayIsIHdpZHRoID0gMyksCiAgICAgICAgICAgIHNob3dsZWdlbmQgPSBGQUxTRSkgfD4KICBhZGRfdHJhY2UoeCA9IHJlcCh4LCB0aW1lcyA9IGdyYXBoJG5WKSwgCiAgICAgICAgICAgIHkgPSByZXAoeSwgdGltZXMgPSBncmFwaCRuViksIAogICAgICAgICAgICB6ID0gYyhyZXBsYWNlKHJlcChOQSwgbnJvdyhBKSksIDE6MTEsIDApLCAKICAgICAgICAgICAgICAgICAgcmVwbGFjZShyZXAoTkEsIG5yb3coQSkpLCBjKDMxOjUxLCAxMTE6MTIxKSwgMCkpLCAKICAgICAgICAgICAgdHlwZSA9ICJzY2F0dGVyM2QiLCAKICAgICAgICAgICAgbW9kZSA9ICJsaW5lcyIsCiAgICAgICAgICAgIGxpbmUgPSBsaXN0KGNvbG9yID0gImdyZWVuIiwgd2lkdGggPSAzKSwgCiAgICAgICAgICAgIHNob3dsZWdlbmQgPSBGQUxTRSkgfD4KICBsYXlvdXQoc2NlbmUgPSBnbG9iYWwuc2NlbmUuc2V0dGVyKHhfcmFuZ2UsIHlfcmFuZ2UsIHpfcmFuZ2UsIHpfYXNwZWN0cmF0aW8gPSAxKSkKcApgYGAKCgpIYXZpbmcgaW50cm9kdWNlZCB0aGUgc3lzdGVtIG9mIGJhc2lzIGZ1bmN0aW9ucyAkXHtcdmFycGhpX2peZSwgXHBoaV92XH0kLCB3aGljaCB3aWxsIGJlIHJlZmVycmVkIHRvIGFzICRce1xwc2lfalx9X3tqPTF9XntOX2h9JCwgd2UgY2FuIG5vdyBkZWZpbmUgdGhlIGZpbml0ZSBlbGVtZW50IHNwYWNlICRWX2hcc3Vic2V0IEheMShcR2FtbWEpJCBhcyAkVl9oID0gXHBhcmV7XGJpZ29wbHVzX3tlXGluXEVjYWx9IFZfe2hfZX19XGJpZ29wbHVzIFZfdiQsIHdoZXJlICRWX3YgPSBcdGV4dHtzcGFufVxwYXJle1x7XHBoaV92OnZcaW5cVmNhbFx9fSQgYW5kICRcZGltXHBhcmV7Vl9ofSQgaXMgZ2l2ZW4gYnkgJE5faCA9IHxcVmNhbHwgKyBcc3VtX3tlXGluXEVjYWx9bl9lJC4KCiMjIEVpZ2VuZnVuY3Rpb25zIGFuZCBlaWdlbnZhbHVlcyBvbiB0aGUgdGFkcG9sZSBncmFwaCB7I2VpZ2VuZnVuY3Rpb25zfQoKTGV0ICRcR2FtbWFfVCA9IChcVmNhbCxcRWNhbCkkIGNoYXJhY3Rlcml6ZSB0aGUgdGFkcG9sZSBncmFwaCB3aXRoICRcVmNhbCA9IFx7dl8xLHZfMlx9JCBhbmQgJFxFY2FsID0gXHtlXzEsZV8yXH0kLiBUaGUgbGVmdCBlZGdlICRlXzEkIGhhcyBsZW5ndGggMSBhbmQgdGhlIGNpcmN1bGFyIGVkZ2UgJGVfMiQgaGFzIGxlbmd0aCAyLiBBIHBvaW50IG9uICRlXzEkIGlzIHBhcmFtZXRlcml6ZWQgdmlhICRzPVxsZWZ0KGVfMSwgdFxyaWdodCkkIGZvciAkdCBcaW5bMCwxXSQgYW5kIGEgcG9pbnQgb24gJGVfMiQgdmlhICRzPVxsZWZ0KGVfMiwgdFxyaWdodCkkIGZvciAkdFxpblswLDJdJC4gT25lIGNhbiB2ZXJpZnkgdGhhdCAkLVxEZWx0YV9cR2FtbWEkIGhhcyBlaWdlbnZhbHVlcyAkMCxcbGVmdFx7KGkgXHBpIC8gMileMlxyaWdodFx9X3tpIFxpbiBcbWF0aGJie059fSQgYW5kICRcbGVmdFx7KGkgXHBpIC8gMileMlxyaWdodFx9X3syIGkgXGluIFxtYXRoYmJ7Tn19JCB3aXRoIGNvcnJlc3BvbmRpbmcgZWlnZW5mdW5jdGlvbnMgJFxwaGlfMCQsICRcbGVmdFx7XHBoaV9pXHJpZ2h0XH1fe2kgXGluIFxtYXRoYmJ7Tn19JCwgYW5kICRcbGVmdFx7XHBzaV9pXHJpZ2h0XH1fezIgaSBcaW4gXG1hdGhiYntOfX0kIGdpdmVuIGJ5ICRccGhpXzAocyk9MSAvIFxzcXJ0ezN9JCBhbmQgClxiZWdpbntlcXVhdGlvbip9CiAgICBccGhpX2kocyk9Q197XHBoaSwgaX1cYmVnaW57Y2FzZXN9CiAgICAgICAgLTIgXHNpbiBcbGVmdChcZGZyYWN7aVxwaX17Mn1ccmlnaHQpIFxjb3MgXGxlZnQoXGRmcmFje2kgXHBpIHN9ezJ9XHJpZ2h0KSwgJiBzIFxpbiBlXzEsIFxcClxzaW4gXGxlZnQoXGRmcmFje2kgXHBpIHN9ezJ9XHJpZ2h0KSwgJiBzIFxpbiBlXzIsCiAgICBcZW5ke2Nhc2VzfSwKXHF1YWQgCiAgICBccHNpX2kocyk9XGRmcmFje1xzcXJ0ezN9fXtcc3FydHsyfX0gXGJlZ2lue2Nhc2VzfQogICAgKC0xKV57aSAvIDJ9IFxjb3MgXGxlZnQoXGRmcmFje2kgXHBpIHN9ezJ9XHJpZ2h0KSwgJiBzIFxpbiBlXzEsIFxcClxjb3MgXGxlZnQoXGRmcmFje2kgXHBpIHN9ezJ9XHJpZ2h0KSwgJiBzIFxpbiBlXzIsClxlbmR7Y2FzZXN9LApcZW5ke2VxdWF0aW9uKn0Kd2hlcmUgJENfe1xwaGksIGl9PTEkIGlmICRpJCBpcyBldmVuIGFuZCAkQ197XHBoaSwgaX09MSAvIFxzcXJ0ezN9JCBvdGhlcndpc2UuIE1vcmVvdmVyLCB0aGVzZSBmdW5jdGlvbnMgZm9ybSBhbiBvcnRob25vcm1hbCBiYXNpcyBmb3IgJExfMihcR2FtbWFfVCkkLgoKCmBgYHtyfQpncmFwaCA8LSBnZXRzLmdyYXBoLnRhZHBvbGUoaCA9IDAuMDIpCmVpZ2VucGFpcnMgPC0gZ2V0cy5laWdlbi5wYXJhbXMoTl9maW5pdGUgPSAxMCwga2FwcGEgPSAxLCBhbHBoYSA9IDAuNSwgZ3JhcGgpCkVJR0VORlVOIDwtIGVpZ2VucGFpcnMkRUlHRU5GVU4KRUlHRU5WQUwgPC0gZWlnZW5wYWlycyRFSUdFTlZBTApJTkRFWCA8LSBlaWdlbnBhaXJzJElOREVYCmBgYAoKCmBgYHtyLCBmaWcuaGVpZ2h0ID0gNiwgb3V0LndpZHRoID0gIjEwMCUiLCBmaWcuY2FwID0gY2FwdGlvbmVyKCJJbGx1c3RyYXRpb24gb2YgdGhlIGVpZ2VuZnVuY3Rpb25zIG9uIHRoZSB0YWRwb2xlIGdyYXBoLiIpfQpncmFwaC5wbG90dGVyLjNkKGdyYXBoLCBJTkRFWCwgRUlHRU5WQUwsIEVJR0VORlVOKQpgYGAKCgojIyBQcm9qZWN0aW9uIG9udG8gYSBmaW5lIHNwYWNlLXRpbWUgbWVzaCB7I3BpZWNld2lzZV9wcm9qZWN0aW9ufQoKIyMjIFRlbXBvcmFsIHBpZWNld2lzZSBwcm9qZWN0aW9uCgpUaGUgcGllY2V3aXNlIGNvbnN0YW50IHByb2plY3Rpb24gJFVfe1x0ZXh0e3BpZWNld2lzZX19KHReKl9cZWxsKSQgb2YgdGhlIGFwcHJveGltYXRlZCB2YWx1ZXMgJFVfe1x0ZXh0e2FwcHJveH19KHRfaykkLCBkZWZpbmVkIG9uIGEgY29hcnNlIHRpbWUgZ3JpZCAkXHt0X2tcfV97az0wfV57Tn0kLCBvbnRvIGEgZmluZXIgZ3JpZCAkXHt0XipfXGVsbFx9X3tcZWxsPTB9XntNfSQsIGlzIGdpdmVuIGJ5CgpcYmVnaW57ZXF1YXRpb259ClVfe1x0ZXh0e3BpZWNld2lzZX19KHReKl9cZWxsKSA9ClxiZWdpbntjYXNlc30KVV97XHRleHR7YXBwcm94fX0odF8wKSwgJiBcdGV4dHtpZiB9IHReKl9cZWxsID0gMCBcXFxcClVfe1x0ZXh0e2FwcHJveH19KHRfayksICYgXHRleHR7aWYgfSB0XipfXGVsbCBcaW4gKHRfe2stMX0sIHRfa10sIFxxdWFkIFx0ZXh0e2ZvciB9IGsgPSAxLCBcZG90cywgTi4KXGVuZHtjYXNlc30KXGVuZHtlcXVhdGlvbn0KClRoaXMgZGVmaW5lcyBhIGZ1bmN0aW9uIHRoYXQgaXMgY29uc3RhbnQgb24gZWFjaCBpbnRlcnZhbCAkKHRfe2stMX0sIHRfa10kLCBhbmQgdGFrZXMgdGhlIHZhbHVlIG9mIHRoZSBhcHByb3hpbWF0aW9uIGF0IHRoZSAqKnJpZ2h0IGVuZHBvaW50KiogJHRfayQgb2YgdGhlIGludGVydmFsLgoKU2VlIHRoZSBbRnVjdGlvbmFsaXR5XShmdW5jdGlvbmFsaXR5Lmh0bWwjY29uc3RydWN0X3BpZWNld2lzZV9wcm9qZWN0aW9uKSBwYWdlIGZvciB0aGUgaW1wbGVtZW50YXRpb24gb2YgdGhlIGZ1bmN0aW9uIGBjb25zdHJ1Y3RfcGllY2V3aXNlX3Byb2plY3Rpb24oKWAgdGhhdCBwZXJmb3JtcyB0aGlzIG9wZXJhdGlvbi4KCiMjIyBTcGF0aWFsIHByb2plY3Rpb24KCkEgZnVuY3Rpb24gJFVfe1x0ZXh0e2NvYXJzZX19KHMpJCBkZWZpbmVkIG9uIGEgY29hcnNlIG1lc2ggd2l0aCAkTl97aH0kIG5vZGVzIGNhbiBiZSBwcm9qZWN0ZWQgb250byBhIGZpbmUgbWVzaCB3aXRoICROX3toX3tcdGV4dHtva319fSQgbm9kZXMgYnkgZG9pbmcgJFVfe1x0ZXh0e2ZpbmV9fShzKSA9IFxib2xkc3ltYm9se1xQc2l9IFVfe1x0ZXh0e2NvYXJzZX19KHMpJCwgd2hlcmUgJFxib2xkc3ltYm9se1xQc2l9JCBpcyBhIG1hdHJpeCB3aXRoIGVudHJpZXMgJFxib2xkc3ltYm9se1xQc2l9X3tpan09XHBzaV5qX2goc19pKSQgZm9yICRqPTFcZG90cywgTl9oJCBhbmQgJGkgPSAxLFxkb3RzIE5fe2hfe1x0ZXh0e29rfX19JC4KCmBgYHtyfQojIFBhcmFtZXRlcnMKVF9maW5hbCA8LSAyCmthcHBhIDwtIDE1Ck5fZmluaXRlID0gNCAjIGNob29zZSBldmVuCmFkanVzdGVkX05fZmluaXRlIDwtIE5fZmluaXRlICsgTl9maW5pdGUvMiArIDEKIyBDb2VmZmljaWVudHMgZm9yIHVfMCBhbmQgZgpjb2VmZl9VXzAgPC0gNTAqKDE6YWRqdXN0ZWRfTl9maW5pdGUpXi0xCmNvZWZmX1VfMFstNV0gPC0gMApjb2VmZl9GRiA8LSByZXAoMCwgYWRqdXN0ZWRfTl9maW5pdGUpCmNvZWZmX0ZGWzddIDwtIDEwCgpBQUEgPSAxCk9NRUdBID0gcGkKCiMgT3ZlcmtpbGwgcGFyYW1ldGVycwpvdmVya2lsbF90aW1lX3N0ZXAgPC0gMC4wMgpvdmVya2lsbF9oIDwtIDAuMDIKCiMgRmluZXN0IHRpbWUgYW5kIHNwYWNlIG1lc2gKb3ZlcmtpbGxfdGltZV9zZXEgPC0gc2VxKDAsIFRfZmluYWwsIGxlbmd0aC5vdXQgPSAoKFRfZmluYWwgLSAwKSAvIG92ZXJraWxsX3RpbWVfc3RlcCArIDEpKQpvdmVya2lsbF9ncmFwaCA8LSBnZXRzLmdyYXBoLnRhZHBvbGUoaCA9IG92ZXJraWxsX2gpCgojIENvbXB1dGUgdGhlIHdlaWdodHMgb24gdGhlIGZpbmVzdCBtZXNoCm92ZXJraWxsX2dyYXBoJGNvbXB1dGVfZmVtKCkgIyBUaGlzIGlzIG5lZWRlZCB0byBjb21wdXRlIHRoZSB3ZWlnaHRzCm92ZXJraWxsX3dlaWdodHMgPC0gb3ZlcmtpbGxfZ3JhcGgkbWVzaCR3ZWlnaHRzCgoKYWxwaGEgPC0gMC41ICMgZnJvbSAwLjUgdG8gMgpiZXRhIDwtIGFscGhhIC8gMgoKIyBDb21wdXRlIHRoZSBlaWdlbnZhbHVlcyBhbmQgZWlnZW5mdW5jdGlvbnMgb24gdGhlIGZpbmVzdCBtZXNoCm92ZXJraWxsX2VpZ2VuX3BhcmFtcyA8LSBnZXRzLmVpZ2VuLnBhcmFtcyhOX2Zpbml0ZSA9IE5fZmluaXRlLCBrYXBwYSA9IGthcHBhLCBhbHBoYSA9IGFscGhhLCBncmFwaCA9IG92ZXJraWxsX2dyYXBoKQpFSUdFTlZBTF9BTFBIQSA8LSBvdmVya2lsbF9laWdlbl9wYXJhbXMkRUlHRU5WQUxfQUxQSEEgIyBFaWdlbnZhbHVlcyAodGhleSBhcmUgaW5kZXBlbmRlbnQgb2YgdGhlIG1lc2hlcykKb3ZlcmtpbGxfRUlHRU5GVU4gPC0gb3ZlcmtpbGxfZWlnZW5fcGFyYW1zJEVJR0VORlVOICMgRWlnZW5mdW5jdGlvbnMgb24gdGhlIGZpbmVzdCBtZXNoCgojIENvbXB1dGUgdGhlIHRydWUgc29sdXRpb24gb24gdGhlIGZpbmVzdCBtZXNoCm92ZXJraWxsX1VfdHJ1ZSA8LSBvdmVya2lsbF9FSUdFTkZVTiAlKiUgCiAgb3V0ZXIoMTpsZW5ndGgoY29lZmZfVV8wKSwgCiAgICAgICAgMTpsZW5ndGgob3ZlcmtpbGxfdGltZV9zZXEpLCAKICAgICAgICBmdW5jdGlvbihpLCBqKSAoY29lZmZfVV8wW2ldICsgY29lZmZfRkZbaV0gKiBHX3Npbih0ID0gb3ZlcmtpbGxfdGltZV9zZXFbal0sIEEgPSBBQUEsIGxhbWJkYV9qX2FscGhhX2hhbGYgPSBFSUdFTlZBTF9BTFBIQVtpXSwgb21lZ2EgPSBPTUVHQSkpICogZXhwKC1FSUdFTlZBTF9BTFBIQVtpXSAqIG92ZXJraWxsX3RpbWVfc2VxW2pdKSkKCgpoIDwtIDAuMgp0aW1lX3N0ZXAgPC0gMC4yCm0gPC0gMQpncmFwaCA8LSBnZXRzLmdyYXBoLnRhZHBvbGUoaCA9IGgpCmdyYXBoJGNvbXB1dGVfZmVtKCkKRyA8LSBncmFwaCRtZXNoJEcKQyA8LSBncmFwaCRtZXNoJEMKTCA8LSBrYXBwYV4yKkMgKyBHCmVpZ2VuX3BhcmFtcyA8LSBnZXRzLmVpZ2VuLnBhcmFtcyhOX2Zpbml0ZSA9IE5fZmluaXRlLCBrYXBwYSA9IGthcHBhLCBhbHBoYSA9IGFscGhhLCBncmFwaCA9IGdyYXBoKQpFSUdFTkZVTiA8LSBlaWdlbl9wYXJhbXMkRUlHRU5GVU4KVV8wIDwtIEVJR0VORlVOICUqJSBjb2VmZl9VXzAgIyBDb21wdXRlIFVfMCBvbiB0aGUgY3VycmVudCBtZXNoCkEgPC0gZ3JhcGgkZmVtX2Jhc2lzKG92ZXJraWxsX2dyYXBoJGdldF9tZXNoX2xvY2F0aW9ucygpKQoKdGltZV9zZXEgPC0gc2VxKDAsIFRfZmluYWwsIGxlbmd0aC5vdXQgPSAoKFRfZmluYWwgLSAwKSAvIHRpbWVfc3RlcCArIDEpKQpteV9vcF9mcmFjIDwtIG15LmZyYWN0aW9uYWwub3BlcmF0b3JzLmZyYWMoTCwgYmV0YSwgQywgc2NhbGUuZmFjdG9yID0ga2FwcGFeMiwgbSA9IG0sIHRpbWVfc3RlcCkKSU5UX0JBU0lTX0VJR0VOIDwtIHQob3ZlcmtpbGxfRUlHRU5GVU4pICUqJSBvdmVya2lsbF9ncmFwaCRtZXNoJEMgJSolIEEKIyBDb21wdXRlIG1hdHJpeCBGIHdpdGggY29sdW1ucyBGXmsKRkZfYXBwcm94IDwtIHQoSU5UX0JBU0lTX0VJR0VOKSAlKiUgCiAgb3V0ZXIoMTpsZW5ndGgoY29lZmZfRkYpLCAKICAgICAgICAxOmxlbmd0aCh0aW1lX3NlcSksIAogICAgZnVuY3Rpb24oaSwgaikgY29lZmZfRkZbaV0gKiBnX3NpbihyID0gdGltZV9zZXFbal0sIEEgPSBBQUEsIG9tZWdhID0gT01FR0EpKQoKVV9hcHByb3ggPC0gbWF0cml4KE5BLCBucm93ID0gbnJvdyhDKSwgbmNvbCA9IGxlbmd0aCh0aW1lX3NlcSkpClVfYXBwcm94WywgMV0gPC0gVV8wCmZvciAoayBpbiAxOihsZW5ndGgodGltZV9zZXEpIC0gMSkpIHsKICBVX2FwcHJveFssIGsgKyAxXSA8LSBhcy5tYXRyaXgobXkuc29sdmVyLmZyYWMobXlfb3BfZnJhYywgbXlfb3BfZnJhYyRDICUqJSBVX2FwcHJveFssIGtdICsgdGltZV9zdGVwICogRkZfYXBwcm94WywgayArIDFdKSkKfQoKcHJvamVjdGVkX1VfYXBwcm94IDwtIEEgJSolIFVfYXBwcm94CnByb2plY3RlZF9VX3BpZWNld2lzZSA8LSBjb25zdHJ1Y3RfcGllY2V3aXNlX3Byb2plY3Rpb24ocHJvamVjdGVkX1VfYXBwcm94LCB0aW1lX3NlcSwgb3ZlcmtpbGxfdGltZV9zZXEpCmBgYAoKCmBgYHtyLCBmaWcuaGVpZ2h0ID0gNiwgb3V0LndpZHRoID0gIjEwMCUiLCBmaWcuY2FwID0gY2FwdGlvbmVyKCJJbGx1c3RyYXRpb24gb2YgdGhlIHByb2plY3Rpb24gb2YgdGhlIGFwcHJveGltYXRlZCBzb2x1dGlvbiAkVV97XFx0ZXh0e2FwcHJveH19JCAoY2FsbGVkIGBwcm9qZWN0ZWRfVV9waWVjZXdpc2VgKSBvbnRvIGEgZmluZSBzcGFjZS10aW1lIG1lc2guIFRoZSB0cnVlIHNvbHV0aW9uICRVX3tcXHRleHR7dHJ1ZX19JCAoY2FsbGVkIGBvdmVya2lsbF9VX3RydWVgKSBpcyBzaG93biBpbiByZWQsIHdoaWxlIHRoZSBwcm9qZWN0aW9uIGlzIHNob3duIGluIGJsdWUuIil9CmdyYXBoLnBsb3R0ZXIuM2Qob3ZlcmtpbGxfZ3JhcGgsIG92ZXJraWxsX3RpbWVfc2VxLCBvdmVya2lsbF90aW1lX3NlcSwgb3ZlcmtpbGxfVV90cnVlLCBwcm9qZWN0ZWRfVV9waWVjZXdpc2UpCmBgYAoKYGBge3IsIGZpZy5oZWlnaHQgPSA2LCBvdXQud2lkdGggPSAiMTAwJSIsIGZpZy5jYXAgPSBjYXB0aW9uZXIoIkFwcHJveGltYXRlZCBzb2x1dGlvbiAkVV97XFx0ZXh0e2FwcHJveH19JCBvbiB0aGUgY29hcnNlIHNwYWNlLXRpbWUgbWVzaC4iKX0KZ3JhcGgucGxvdHRlci4zZChncmFwaCwgdGltZV9zZXEsIHRpbWVfc2VxLCBVX2FwcHJveCkKYGBgCgojIyBSZWZlcmVuY2VzCgpgYGB7cn0KZ3JhdGVmdWw6OmNpdGVfcGFja2FnZXMob3V0cHV0ID0gInBhcmFncmFwaCIsIG91dC5kaXIgPSAiLiIpCmBgYAoKCg==