Let us set some global options for all code chunks in this
document.
The equation
We analyze and numerically approximate solutions to fractional
diffusion equations on metric graphs of the form \[\begin{equation}
\label{eq:maineq}
\tag{1}
\left\{
\begin{aligned}
\partial_t u(s,t) + (\kappa^2 - \Delta_\Gamma)^{\alpha/2} u(s,t)
&= f(s,t), && \quad (s,t) \in \Gamma \times (0, T), \\
u(s,0) &= u_0(s), && \quad s \in \Gamma,
\end{aligned}
\right.
\end{equation}\] with \(u(\cdot,t)\) satisfying the Kirchhoff
vertex conditions \[\begin{equation}
\label{eq:Kcond}
\tag{2}
\mathcal{K} = \left\{\phi\in C(\Gamma)\;\middle|\; \forall v\in
\mathcal{V}:\; \textstyle\sum_{e\in\mathcal{E}_v}\partial_e \phi(v)=0
\right\}.
\end{equation}\] Here \(\Gamma =
(\mathcal{V},\mathcal{E})\) is a metric graph, \(\kappa>0\), \(\alpha\in(0,2]\) determines the smoothness
of \(u(\cdot,t)\), \(\Delta_{\Gamma}\) is the so-called
Kirchhoff–Laplacian, and \(f:\Gamma\times
(0,T)\to\mathbb{R}\) and \(u_0: \Gamma
\to \mathbb{R}\) are fixed functions, called right-hand side and
initial condition, respectively.
Eigenfunction-based
construction of an exact solution
The exact solution to \(\eqref{eq:maineq}\) can be expressed as
\[\begin{equation}
\label{eq:sol_reprentation}
\tag{3}
u(s,t) =
\displaystyle\sum_{j\in\mathbb{N}}e^{-\lambda^{\alpha/2}_jt}\left(u_0,
e_j\right)_{L_2(\Gamma)}e_j(s) + \int_0^t
\displaystyle\sum_{j\in\mathbb{N}}e^{-\lambda^{\alpha/2}_j(t-r)}\left(f(\cdot,
r), e_j\right)_{L_2(\Gamma)}e_j(s)dr.
\end{equation}\]
To construct an exact solution, we expand both the initial condition and
the right-hand side in terms of the eigenfunctions. We choose
coefficients
\(\{x_j\}_{j=1}^{\infty}\)
and
\(\{y_j\}_{j=1}^{\infty}\) and a
scalar function
\(g(t)\) and set
\[\begin{align}
\tag{4}
u_0(s) = \sum_{j=1}^{\infty} x_j e_j(s)\quad \text{ and }\quad
f(s,t) = g(t) \sum_{j=1}^{\infty} y_j e_j(s).
\end{align}\] Substituting these expressions into the solution
formula
\(\eqref{eq:sol_reprentation}\), we obtain
\[\begin{align}
\label{sollll}
\tag{5}
u(s,t) = \sum_{j=1}^{\infty}(x_j+y_j
G_j(t))e^{-\lambda^{\alpha/2}_jt}e_j(s),\quad G_j(t)= \int_0^t
e^{\lambda^{\alpha/2}_jr}g(r)dr,
\end{align}\] where the integral can be evaluated analytically
for some choices of
\(g(t)\), as shown
in the
Functionality
page. The following list shows how the above expressions are implemented
in
\(\texttt{R}\).
\[\begin{aligned}
\text{expression} \iff&\quad \text{In } \texttt{R}\\
\{x_j\}_{j=1}^{\infty} \iff&\quad \texttt{coeff_U_0}\\
\{y_j\}_{j=1}^{\infty} \iff&\quad \texttt{coeff_FF}\\
[e_1 e_2 \dots e_{N_f}] \iff&\quad \texttt{EIGENFUN}\\
u_0(s) \iff&\quad \texttt{U_0 <- EIGENFUN %*% coeff_U_0}\\
f(s,t) \iff&\quad \texttt{FF_true <- EIGENFUN %*%}\\
&\quad\texttt{ outer(1:length(coeff_FF),}\\
&\qquad\qquad\texttt{ 1:length(time_seq),}\\
&\qquad\qquad\texttt{ function(i, j) coeff_FF[i] * g_sin(r =
time_seq[j], A = AAA, omega = OMEGA))}\\
u(s,t) \iff&\quad \texttt{U_true <- EIGENFUN %*%}\\
&\quad\texttt{ outer(1:length(coeff_U_0),}\\
&\qquad\qquad\texttt{ 1:length(time_seq),}\\
&\qquad\qquad\texttt{ function(i, j) (coeff_U_0[i] + coeff_FF[i] *
G_sin(t = time_seq[j], A = AAA, lambda_j_alpha_half = EIGENVAL_ALPHA[i],
omega = OMEGA)) *}\\
&\qquad\qquad\qquad\qquad\qquad\qquad\quad\texttt{exp(-EIGENVAL_ALPHA[i]
* time_seq[j]))}
\end{aligned}\]
Let us check that \(\eqref{sollll}\)
is a solution of \(\eqref{eq:maineq}\).
At \(t=0\), we get \[\begin{align*}
u(s,0) = \sum_{j=1}^{\infty}(x_j+y_j
G_j(0))e^{-\lambda^{\alpha/2}_j0}e_j(s) = \sum_{j=1}^{\infty}x_je_j(s)
=u_0(s),
\end{align*}\] while for \((s,t) \in
\Gamma \times (0, T)\), we obtain \[\begin{align*}
\partial_t u(s,t) = \sum_{j=1}^{\infty}y_j
G'_j(t)e^{-\lambda^{\alpha/2}_jt}e_j(s) -
\sum_{j=1}^{\infty}(x_j+y_j
G_j(t))e^{-\lambda^{\alpha/2}_jt}\lambda^{\alpha/2}_je_j(s)
\end{align*}\] and \[\begin{align*}
(\kappa^2 - \Delta_\Gamma)^{\alpha/2} u(s,t) &=
\sum_{j=1}^{\infty}(x_j+y_j G_j(t))e^{-\lambda^{\alpha/2}_jt}(\kappa^2 -
\Delta_\Gamma)^{\alpha/2}e_j(s)\\
&= \sum_{j=1}^{\infty}(x_j+y_j
G_j(t))e^{-\lambda^{\alpha/2}_jt}\lambda^{\alpha/2}_je_j(s).
\end{align*}\] Adding these two and using the fact that \(G'_j(t) =
e^{\lambda^{\alpha/2}_jt}g(t)\) yield \[\begin{align*}
\partial_t u(s,t) + (\kappa^2 - \Delta_\Gamma)^{\alpha/2}
u(s,t)&= g(t)\sum_{j=1}^{\infty}y_je^{\lambda^{\alpha/2}_jt}
e^{-\lambda^{\alpha/2}_jt}e_j(s) = f(s,t).
\end{align*}\] This shows that \(\eqref{sollll}\) is indeed a solution of
\(\eqref{eq:maineq}\).
From the
Functionality page,
we know that the solution to
\(\eqref{eq:maineq}\) can be approximated by
a numerical scheme of the form
\[\begin{equation}
\label{eq:final_scheme2}
\tag{6}
\boldsymbol{U}^{k+1} = \boldsymbol{C}^{-1}\left(\sum_{k=1}^{m+1}
a_k\left(
\dfrac{\boldsymbol{L}\boldsymbol{C}^{-1}}{\kappa^2}-p_k\boldsymbol{I}\right)^{-1}
+ r\boldsymbol{I}\right) (\boldsymbol{C}\boldsymbol{U}^k+\tau
\boldsymbol{F}^{k+1})
\end{equation}\] Let
\(\boldsymbol{F}\) be the matrix with columns
\(\boldsymbol{F}^k\). This matrix has
entries
\(\boldsymbol{F}_{ik}\) given
by
\[\begin{align}
\label{eq:innerprod}
\tag{7}
(f^{k},\psi^i_h)_{L_2(\Gamma)} =
(f(\cdot,t_k),\psi^i_h)_{L_2(\Gamma)} = \sum_{j=1}^{N_f} y_j g(t_k)
(e_j,\psi^i_h)_{L_2(\Gamma)}.
\end{align}\] To approximate the inner products
\((e_j,\psi^i_h)_{L_2(\Gamma)}\), we use the
quadrature formula
\(\boldsymbol{\psi}_i^\top\boldsymbol{C}^{\text{ok}}\boldsymbol{e}_j\),
where
\(\boldsymbol{e}_j=[e_j(s_1)\dots
e_j(s_{N_{h_{\text{ok}}}})]^\top\) and
\(\boldsymbol{\psi}_i=[\psi^i_h(s_1)\dots
\psi^i_h(s_{N_{h_{\text{ok}}}})]^\top\) are vectors of function
evaluations on a fine spatial mesh with mesh size
\(h_{\text{ok}}\) and nodes
\(\{s_\ell\}_{\ell=1}^{N_{h_{\text{ok}}}}\).
Matrix
\(\boldsymbol{C}^{\text{ok}}\)
contains the corresponding quadrature weights, with entries
\(\boldsymbol{C}^{\text{ok}}_{nm} =
(\psi_{h_\text{ok}}^n,\psi_{h_\text{ok}}^m)_{L_2(\Gamma)}\) for
\(n,m = 1,\dots, N_{h_\text{ok}}\). We
emphasize that two spatial meshes are involved in this construction. The
basis functions
\(\{\psi^i_h\}_{i=1}^{N_h}\) are defined on a
coarse spatial mesh with mesh size
\(h\), while the quadrature is carried out
over a finer mesh with associated basis functions
\(\{\psi^\ell_{h_\text{ok}}\}_{\ell=1}^{N_{h_\text{ok}}}\)
and mesh size
\(h_\text{ok}\). If
\(\boldsymbol{N}\) denotes the matrix with
entries
\(\boldsymbol{N}_{jk} = y_j
g(t_k)\), then
\(\boldsymbol{F}\) can be approximated as
\([\boldsymbol{\psi}_1\dots
\boldsymbol{\psi}_{N_h}]^\top \boldsymbol{C}^{\text{ok}}
[\boldsymbol{e}_1\dots \boldsymbol{e}_{N_f}] \boldsymbol{N}\). In
\(\texttt{R}\),
\(\boldsymbol{F}\) and
\(\boldsymbol{U}^{k+1}\) are implemented as
\[\begin{aligned}
\text{expression} \iff&\quad \text{In } \texttt{R}\\
[\boldsymbol{\psi}_1\dots \boldsymbol{\psi}_{N_h}]^\top \iff&\quad
\texttt{t(graph\$fem_basis(overkill_graph\$get_mesh_locations()))}\\
\boldsymbol{C}^{\text{ok}} \iff&\quad
\texttt{overkill_graph\$mesh\$C}\\
[\boldsymbol{e}_1\dots \boldsymbol{e}_{N_f}] \iff&\quad
\texttt{overkill_EIGENFUN}\\
\boldsymbol{N} \iff&\quad \texttt{outer(1:length(coeff_FF),}\\
&\qquad\quad\;\;\texttt{ 1:length(time_seq),}\\
&\qquad\quad\;\;\texttt{ function(i, j) coeff_FF[i] * g_sin(r =
time_seq[j], A = AAA, omega = OMEGA))}\\
\boldsymbol{F}\iff&\quad \texttt{FF_innerprod <-
t(graph\$fem_basis(overkill_graph\$get_mesh_locations())) %*%}\\
&\quad\texttt{overkill_graph\$mesh\$C %*%}\\
&\quad\texttt{overkill_EIGENFUN %*%}\\
&\quad\texttt{outer(1:length(coeff_FF),}\\
&\qquad\qquad\texttt{1:length(time_seq),}\\
&\qquad\qquad\texttt{function(i, j) coeff_FF[i] * g_sin(r =
time_seq[j], A = AAA, omega = OMEGA))}\\
\boldsymbol{U}^{k+1}\iff&\quad \texttt{U_approx[, k + 1] <-
as.matrix(my.solver.frac(my_op_frac, my_op_frac\$C %*% U_approx[, k] +
time_step * FF_innerprod[, k + 1]))}
\end{aligned}\]
T_final <- 2
time_step <- 0.001
h <- 0.001
kappa <- 15
alpha <- 0.5
m = 1
beta <- alpha/2
N_finite = 4 # choose even
adjusted_N_finite <- N_finite + N_finite/2 + 1
# Coefficients for u_0 and f
coeff_U_0 <- 50*(1:adjusted_N_finite)^-1
coeff_U_0[-5] <- 0
coeff_FF <- rep(0, adjusted_N_finite)
coeff_FF[7] <- 10
time_seq <- seq(0, T_final, by = time_step)
graph <- gets.graph.tadpole(h = h)
graph$compute_fem()
G <- graph$mesh$G
C <- graph$mesh$C
L <- kappa^2*C + G
I <- Matrix::Diagonal(nrow(C))
eigen_params <- gets.eigen.params(N_finite = N_finite, kappa = kappa, alpha = alpha, graph = graph)
EIGENVAL_ALPHA <- eigen_params$EIGENVAL_ALPHA
EIGENFUN <- eigen_params$EIGENFUN
AAA = 1
OMEGA = pi
U_0 <- EIGENFUN %*% coeff_U_0
U_true <- EIGENFUN %*%
outer(1:length(coeff_U_0),
1:length(time_seq),
function(i, j) (coeff_U_0[i] + coeff_FF[i] * G_sin(t = time_seq[j], A = AAA, lambda_j_alpha_half = EIGENVAL_ALPHA[i], omega = OMEGA) ) * exp(-EIGENVAL_ALPHA[i] * time_seq[j]))
overkill_graph <- gets.graph.tadpole(h = 0.0001)
overkill_graph$compute_fem()
overkill_EIGENFUN <- gets.eigen.params(N_finite = N_finite, kappa = kappa, alpha = alpha, graph = overkill_graph)$EIGENFUN
FF_innerprod <- t(graph$fem_basis(overkill_graph$get_mesh_locations())) %*%
overkill_graph$mesh$C %*%
overkill_EIGENFUN %*%
outer(1:length(coeff_FF),
1:length(time_seq),
function(i, j) coeff_FF[i] * g_sin(r = time_seq[j], A = AAA, omega = OMEGA))
FF_true <- EIGENFUN %*% outer(1:length(coeff_FF),
1:length(time_seq),
function(i, j) coeff_FF[i] * g_sin(r = time_seq[j], A = AAA, omega = OMEGA))
# Numerical solution
my_op_frac <- my.fractional.operators.frac(L, beta, C, scale.factor = kappa^2, m = m, time_step)
U_approx <- solve_fractional_evolution(my_op_frac, time_step, time_seq, val_at_0 = U_0, RHST = FF_innerprod)
error <- sqrt(as.double(t(graph$mesh$weights) %*% (U_true - U_approx)^2 %*% rep(time_step, ncol(U_true))))
The following is the error reported in the paper for the considered
experiment.
print(paste0("Total error = ", formatC(error, format = "f", digits = 9)))
## [1] "Total error = 0.004003178"
Because of GitHub storage limits, we project the solution (and all
other visualizations) to a coarser mesh as follows.
aux_graph <- gets.graph.tadpole(h = 0.01)
A_proj <- graph$fem_basis(aux_graph$get_mesh_locations())
FF_true <- A_proj %*% FF_true
U_true <- A_proj %*% U_true
U_approx <- A_proj %*% U_approx
start_idx <- which.min(abs(time_seq - 0.5))
end_idx <- which.min(abs(time_seq - 1.5))
idx <- seq(start_idx, end_idx, by = 4)
graph.plotter.3d.single(aux_graph, FF_true[, idx], time_seq[idx])
abs_error <- abs(U_true[, idx] - U_approx[, idx])
graph.plotter.3d.single(aux_graph, abs_error, time_seq[idx])
idx2 <- seq(start_idx, end_idx, by = 10)
graph.plotter.3d.comparer(aux_graph, U_true[,idx2], U_approx[,idx2], time_seq[idx2])
References
grateful::cite_packages(output = "paragraph", out.dir = ".")
We used R version 4.5.0 (R Core Team
2025) and the following R packages: gsignal v. 0.3.7 (Van Boxtel, G.J.M., et al. 2021), here v. 1.0.1
(Müller 2020), htmltools v. 0.5.8.1 (Cheng et al. 2024), knitr v. 1.50 (Xie 2014, 2015, 2025), Matrix v. 1.7.3 (Bates, Maechler, and Jagan 2025), MetricGraph
v. 1.5.0.9000 (Bolin, Simas, and Wallin 2023a,
2023b, 2024, 2025; Bolin et al. 2024), patchwork v. 1.3.1 (Pedersen 2025), plotly v. 4.10.4 (Sievert 2020), RColorBrewer v. 1.1.3 (Neuwirth 2022), renv v. 1.0.7 (Ushey and Wickham 2024), reshape2 v. 1.4.4
(Wickham 2007), rmarkdown v. 2.29 (Xie, Allaire, and Grolemund 2018; Xie, Dervieux, and
Riederer 2020; Allaire et al. 2024), rSPDE v. 2.5.1.9000 (Bolin and Kirchner 2020; Bolin and Simas 2023; Bolin,
Simas, and Xiong 2024), scales v. 1.4.0 (Wickham, Pedersen, and Seidel 2025), slackr v.
3.4.0 (Kaye et al. 2025), tidyverse v.
2.0.0 (Wickham et al. 2019), viridisLite
v. 0.4.2 (Garnier et al. 2023),
xaringanExtra v. 0.8.0 (Aden-Buie and Warkentin
2024).
Allaire, JJ, Yihui Xie, Christophe Dervieux, Jonathan McPherson, Javier
Luraschi, Kevin Ushey, Aron Atkins, et al. 2024.
rmarkdown: Dynamic Documents for r.
https://github.com/rstudio/rmarkdown.
Bates, Douglas, Martin Maechler, and Mikael Jagan. 2025.
Matrix: Sparse and Dense Matrix Classes and
Methods.
https://doi.org/10.32614/CRAN.package.Matrix.
Bolin, David, and Kristin Kirchner. 2020.
“The Rational
SPDE Approach for Gaussian Random Fields with
General Smoothness.” Journal of Computational and Graphical
Statistics 29 (2): 274–85.
https://doi.org/10.1080/10618600.2019.1665537.
Bolin, David, Mihály Kovács, Vivek Kumar, and Alexandre B. Simas. 2024.
“Regularity and Numerical Approximation of Fractional Elliptic
Differential Equations on Compact Metric Graphs.” Mathematics
of Computation 93 (349): 2439–72.
https://doi.org/10.1090/mcom/3929.
Bolin, David, and Alexandre B. Simas. 2023.
rSPDE: Rational Approximations of Fractional
Stochastic Partial Differential Equations.
https://CRAN.R-project.org/package=rSPDE.
Bolin, David, Alexandre B. Simas, and Jonas Wallin. 2023a.
MetricGraph: Random Fields on Metric Graphs.
https://CRAN.R-project.org/package=MetricGraph.
———. 2023b.
“Statistical Inference for Gaussian Whittle-Matérn
Fields on Metric Graphs.” arXiv Preprint
arXiv:2304.10372.
https://doi.org/10.48550/arXiv.2304.10372.
———. 2024.
“Gaussian Whittle-Matérn Fields on Metric
Graphs.” Bernoulli 30 (2): 1611–39.
https://doi.org/10.3150/23-BEJ1647.
———. 2025.
“Markov Properties of Gaussian Random Fields on Compact
Metric Graphs.” Bernoulli.
https://doi.org/10.48550/arXiv.2304.03190.
Bolin, David, Alexandre B. Simas, and Zhen Xiong. 2024.
“Covariance-Based Rational Approximations of Fractional SPDEs for
Computationally Efficient Bayesian Inference.” Journal of
Computational and Graphical Statistics 33 (1): 64–74.
https://doi.org/10.1080/10618600.2023.2231051.
Garnier, Simon, Ross, Noam, Rudis, Robert, Camargo, et al. 2023.
viridis(Lite) - Colorblind-Friendly
Color Maps for r.
https://doi.org/10.5281/zenodo.4678327.
Kaye, Matt, Bob Rudis, Andrie de Vries, and Jonathan Sidi. 2025.
slackr: Send Messages, Images, r Objects
and Files to “Slack” Channels/Users.
https://github.com/mrkaye97/slackr.
Müller, Kirill. 2020.
here: A Simpler
Way to Find Your Files.
https://doi.org/10.32614/CRAN.package.here.
Neuwirth, Erich. 2022.
RColorBrewer: ColorBrewer
Palettes.
https://doi.org/10.32614/CRAN.package.RColorBrewer.
Pedersen, Thomas Lin. 2025.
patchwork:
The Composer of Plots.
https://doi.org/10.32614/CRAN.package.patchwork.
R Core Team. 2025.
R: A Language and Environment for
Statistical Computing. Vienna, Austria: R Foundation for
Statistical Computing.
https://www.R-project.org/.
Sievert, Carson. 2020.
Interactive Web-Based Data Visualization with
r, Plotly, and Shiny. Chapman; Hall/CRC.
https://plotly-r.com.
Ushey, Kevin, and Hadley Wickham. 2024.
renv: Project Environments.
https://doi.org/10.32614/CRAN.package.renv.
Van Boxtel, G.J.M., et al. 2021.
gsignal: Signal Processing.
https://github.com/gjmvanboxtel/gsignal.
Wickham, Hadley. 2007.
“Reshaping Data with the reshape Package.” Journal of
Statistical Software 21 (12): 1–20.
http://www.jstatsoft.org/v21/i12/.
Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy
D’Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019.
“Welcome to the tidyverse.”
Journal of Open Source Software 4 (43): 1686.
https://doi.org/10.21105/joss.01686.
Wickham, Hadley, Thomas Lin Pedersen, and Dana Seidel. 2025.
scales: Scale Functions for Visualization.
https://doi.org/10.32614/CRAN.package.scales.
Xie, Yihui. 2014. “knitr: A
Comprehensive Tool for Reproducible Research in R.”
In Implementing Reproducible Computational Research, edited by
Victoria Stodden, Friedrich Leisch, and Roger D. Peng. Chapman;
Hall/CRC.
———. 2015.
Dynamic Documents with R and Knitr. 2nd
ed. Boca Raton, Florida: Chapman; Hall/CRC.
https://yihui.org/knitr/.
———. 2025.
knitr: A General-Purpose
Package for Dynamic Report Generation in R.
https://yihui.org/knitr/.
Xie, Yihui, J. J. Allaire, and Garrett Grolemund. 2018.
R Markdown:
The Definitive Guide. Boca Raton, Florida: Chapman; Hall/CRC.
https://bookdown.org/yihui/rmarkdown.
Xie, Yihui, Christophe Dervieux, and Emily Riederer. 2020.
R
Markdown Cookbook. Boca Raton, Florida: Chapman; Hall/CRC.
https://bookdown.org/yihui/rmarkdown-cookbook.
LS0tCnRpdGxlOiAiRXhwZXJpbWVudCIKZGF0ZTogIkxhc3QgbW9kaWZpZWQ6IGByIGZvcm1hdChTeXMudGltZSgpLCAnJWQtJW0tJVkuJylgIgpvdXRwdXQ6CiAgaHRtbF9kb2N1bWVudDoKICAgIG1hdGhqYXg6ICJodHRwczovL2Nkbi5qc2RlbGl2ci5uZXQvbnBtL21hdGhqYXhAMy9lczUvdGV4LW1tbC1jaHRtbC5qcyIKICAgIGhpZ2hsaWdodDogcHlnbWVudHMKICAgIHRoZW1lOiBmbGF0bHkKICAgIGNvZGVfZm9sZGluZzogaGlkZSAjIGNsYXNzLnNvdXJjZSA9ICJmb2xkLWhpZGUiIHRvIGhpZGUgY29kZSBhbmQgYWRkIGEgYnV0dG9uIHRvIHNob3cgaXQKICAgIGRmX3ByaW50OiBwYWdlZAogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6CiAgICAgIGNvbGxhcHNlZDogdHJ1ZQogICAgICBzbW9vdGhfc2Nyb2xsOiB0cnVlCiAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUKICAgIGZpZ19jYXB0aW9uOiB0cnVlCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlCiAgICBjc3M6IHZpc3VhbC5jc3MKYWx3YXlzX2FsbG93X2h0bWw6IHRydWUKYmlibGlvZ3JhcGh5OiAKICAtIHJlZmVyZW5jZXMuYmliCiAgLSBncmF0ZWZ1bC1yZWZzLmJpYgpoZWFkZXItaW5jbHVkZXM6CiAgLSBcbmV3Y29tbWFuZHtcYXJ9e1xtYXRoYmJ7Un19CiAgLSBcbmV3Y29tbWFuZHtcbGxhdn1bMV17XGxlZnRceyMxXHJpZ2h0XH19CiAgLSBcbmV3Y29tbWFuZHtccGFyZX1bMV17XGxlZnQoIzFccmlnaHQpfQogIC0gXG5ld2NvbW1hbmR7XE5jYWx9e1xtYXRoY2Fse059fQogIC0gXG5ld2NvbW1hbmR7XFZjYWx9e1xtYXRoY2Fse1Z9fQogIC0gXG5ld2NvbW1hbmR7XEVjYWx9e1xtYXRoY2Fse0V9fQogIC0gXG5ld2NvbW1hbmR7XFdjYWx9e1xtYXRoY2Fse1d9fQotLS0KCkdvIGJhY2sgdG8gdGhlIFtDb250ZW50c10oYWJvdXQuaHRtbCkgcGFnZS4KCjxkaXYgc3R5bGU9ImNvbG9yOiAjMmMzZTUwOyB0ZXh0LWFsaWduOiByaWdodDsiPgoqKioqKioqKiAgCjxzdHJvbmc+UHJlc3MgU2hvdyB0byByZXZlYWwgdGhlIGNvZGUgY2h1bmtzLjwvc3Ryb25nPiAgCgoqKioqKioqKgo8L2Rpdj4KCgpMZXQgdXMgc2V0IHNvbWUgZ2xvYmFsIG9wdGlvbnMgZm9yIGFsbCBjb2RlIGNodW5rcyBpbiB0aGlzIGRvY3VtZW50LgoKCmBgYHtyfQojIENyZWF0ZSBhIGNsaXBib2FyZCBidXR0b24Kc291cmNlKGhlcmU6OmhlcmUoImNsaXBib2FyZC5SIikpOyBjbGlwYm9hcmQKIyBTZXQgc2VlZCBmb3IgcmVwcm9kdWNpYmlsaXR5CnNldC5zZWVkKDE5ODIpIAojIFNldCBnbG9iYWwgb3B0aW9ucyBmb3IgYWxsIGNvZGUgY2h1bmtzCmtuaXRyOjpvcHRzX2NodW5rJHNldCgKICAjIERpc2FibGUgbWVzc2FnZXMgcHJpbnRlZCBieSBSIGNvZGUgY2h1bmtzCiAgbWVzc2FnZSA9IEZBTFNFLCAgICAKICAjIERpc2FibGUgd2FybmluZ3MgcHJpbnRlZCBieSBSIGNvZGUgY2h1bmtzCiAgd2FybmluZyA9IEZBTFNFLCAgICAKICAjIFNob3cgUiBjb2RlIHdpdGhpbiBjb2RlIGNodW5rcyBpbiBvdXRwdXQKICBlY2hvID0gVFJVRSwgICAgICAgIAogICMgSW5jbHVkZSBib3RoIFIgY29kZSBhbmQgaXRzIHJlc3VsdHMgaW4gb3V0cHV0CiAgaW5jbHVkZSA9IFRSVUUsICAgICAKICAjIEV2YWx1YXRlIFIgY29kZSBjaHVua3MKICBldmFsID0gVFJVRSwgICAgICAgCiAgIyBFbmFibGUgY2FjaGluZyBvZiBSIGNvZGUgY2h1bmtzIGZvciBmYXN0ZXIgcmVuZGVyaW5nCiAgY2FjaGUgPSBGQUxTRSwgICAgICAKICAjIEFsaWduIGZpZ3VyZXMgaW4gdGhlIGNlbnRlciBvZiB0aGUgb3V0cHV0CiAgZmlnLmFsaWduID0gImNlbnRlciIsCiAgIyBFbmFibGUgcmV0aW5hIGRpc3BsYXkgZm9yIGhpZ2gtcmVzb2x1dGlvbiBmaWd1cmVzCiAgcmV0aW5hID0gMiwKICAjIFNob3cgZXJyb3JzIGluIHRoZSBvdXRwdXQgaW5zdGVhZCBvZiBzdG9wcGluZyByZW5kZXJpbmcKICBlcnJvciA9IFRSVUUsCiAgIyBEbyBub3QgY29sbGFwc2UgY29kZSBhbmQgb3V0cHV0IGludG8gYSBzaW5nbGUgYmxvY2sKICBjb2xsYXBzZSA9IEZBTFNFCikKIyBTdGFydCB0aGUgZmlndXJlIGNvdW50ZXIKZmlnX2NvdW50IDwtIDAKIyBEZWZpbmUgdGhlIGNhcHRpb25lciBmdW5jdGlvbgpjYXB0aW9uZXIgPC0gZnVuY3Rpb24oY2FwdGlvbikgewogIGZpZ19jb3VudCA8PC0gZmlnX2NvdW50ICsgMQogIHBhc3RlMCgiRmlndXJlICIsIGZpZ19jb3VudCwgIjogIiwgY2FwdGlvbikKfQpgYGAKCgoKYGBge3J9CiMgcmVtb3Rlczo6aW5zdGFsbF9naXRodWIoImRhdmlkYm9saW4vcnNwZGUiLCByZWYgPSAiZGV2ZWwiKQojIHJlbW90ZXM6Omluc3RhbGxfZ2l0aHViKCJkYXZpZGJvbGluL21ldHJpY2dyYXBoIiwgcmVmID0gImRldmVsIikKbGlicmFyeShyU1BERSkKbGlicmFyeShNZXRyaWNHcmFwaCkKbGlicmFyeShncmF0ZWZ1bCkKCmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeShyZXNoYXBlMikKbGlicmFyeShwbG90bHkpCmBgYAoKCgpgYGB7cn0KY2FwdHVyZS5vdXRwdXQoCiAga25pdHI6OnB1cmwoaGVyZTo6aGVyZSgiZnVuY3Rpb25hbGl0eS5SbWQiKSwgb3V0cHV0ID0gaGVyZTo6aGVyZSgiZnVuY3Rpb25hbGl0eS5SIikpLAogIGZpbGUgPSBoZXJlOjpoZXJlKCJwdXJsX2xvZy50eHQiKQopCnNvdXJjZShoZXJlOjpoZXJlKCJmdW5jdGlvbmFsaXR5LlIiKSkKYGBgCgoKIyMgVGhlIGVxdWF0aW9uCgpXZSBhbmFseXplIGFuZCBudW1lcmljYWxseSBhcHByb3hpbWF0ZSBzb2x1dGlvbnMgdG8gZnJhY3Rpb25hbCBkaWZmdXNpb24gZXF1YXRpb25zIG9uIG1ldHJpYyBncmFwaHMgb2YgdGhlIGZvcm0KXGJlZ2lue2VxdWF0aW9ufQpcbGFiZWx7ZXE6bWFpbmVxfQpcdGFnezF9ClxsZWZ0XHsKXGJlZ2lue2FsaWduZWR9CiAgICBccGFydGlhbF90IHUocyx0KSArIChca2FwcGFeMiAtIFxEZWx0YV9cR2FtbWEpXntcYWxwaGEvMn0gdShzLHQpICY9IGYocyx0KSwgJiYgXHF1YWQgKHMsdCkgXGluIFxHYW1tYSBcdGltZXMgKDAsIFQpLCBcXAogICAgdShzLDApICY9IHVfMChzKSwgJiYgXHF1YWQgcyBcaW4gXEdhbW1hLApcZW5ke2FsaWduZWR9ClxyaWdodC4KXGVuZHtlcXVhdGlvbn0Kd2l0aCAkdShcY2RvdCx0KSQgc2F0aXNmeWluZyB0aGUgS2lyY2hob2ZmIHZlcnRleCBjb25kaXRpb25zClxiZWdpbntlcXVhdGlvbn0KXGxhYmVse2VxOktjb25kfQpcdGFnezJ9CiAgIFxtYXRoY2Fse0t9ID0gIFxsZWZ0XHtccGhpXGluIEMoXEdhbW1hKVw7XG1pZGRsZXxcOyBcZm9yYWxsIHZcaW4gXG1hdGhjYWx7Vn06XDsgXHRleHRzdHlsZVxzdW1fe2VcaW5cbWF0aGNhbHtFfV92fVxwYXJ0aWFsX2UgXHBoaSh2KT0wIFxyaWdodFx9LgpcZW5ke2VxdWF0aW9ufQpIZXJlICRcR2FtbWEgPSAoXG1hdGhjYWx7Vn0sXG1hdGhjYWx7RX0pJCBpcyBhIG1ldHJpYyBncmFwaCwgJFxrYXBwYT4wJCwgJFxhbHBoYVxpbigwLDJdJCBkZXRlcm1pbmVzIHRoZSBzbW9vdGhuZXNzIG9mICR1KFxjZG90LHQpJCwgJFxEZWx0YV97XEdhbW1hfSQgaXMgdGhlIHNvLWNhbGxlZCBLaXJjaGhvZmYtLUxhcGxhY2lhbiwgYW5kICRmOlxHYW1tYVx0aW1lcyAoMCxUKVx0b1xtYXRoYmJ7Un0kIGFuZCAkdV8wOiBcR2FtbWEgXHRvIFxtYXRoYmJ7Un0kIGFyZSBmaXhlZCBmdW5jdGlvbnMsIGNhbGxlZCByaWdodC1oYW5kIHNpZGUgYW5kIGluaXRpYWwgY29uZGl0aW9uLCByZXNwZWN0aXZlbHkuCgojIyBFaWdlbmZ1bmN0aW9uLWJhc2VkIGNvbnN0cnVjdGlvbiBvZiBhbiBleGFjdCBzb2x1dGlvbiB7I2VpZ2Vuc29sY29uc3R9CgpUaGUgZXhhY3Qgc29sdXRpb24gdG8gXGVxcmVme2VxOm1haW5lcX0gY2FuIGJlIGV4cHJlc3NlZCBhcwpcYmVnaW57ZXF1YXRpb259ClxsYWJlbHtlcTpzb2xfcmVwcmVudGF0aW9ufQpcdGFnezN9CiAgICAgICAgdShzLHQpID0gXGRpc3BsYXlzdHlsZVxzdW1fe2pcaW5cbWF0aGJie059fWVeey1cbGFtYmRhXntcYWxwaGEvMn1fanR9XGxlZnQodV8wLCBlX2pccmlnaHQpX3tMXzIoXEdhbW1hKX1lX2oocykgKyBcaW50XzBedCBcZGlzcGxheXN0eWxlXHN1bV97alxpblxtYXRoYmJ7Tn19ZV57LVxsYW1iZGFee1xhbHBoYS8yfV9qKHQtcil9XGxlZnQoZihcY2RvdCwgciksIGVfalxyaWdodClfe0xfMihcR2FtbWEpfWVfaihzKWRyLgpcZW5ke2VxdWF0aW9ufQoKVG8gY29uc3RydWN0IGFuIGV4YWN0IHNvbHV0aW9uLCB3ZSBleHBhbmQgYm90aCB0aGUgaW5pdGlhbCBjb25kaXRpb24gYW5kIHRoZSByaWdodC1oYW5kIHNpZGUgaW4gdGVybXMgb2YgdGhlIGVpZ2VuZnVuY3Rpb25zLiBXZSBjaG9vc2UgY29lZmZpY2llbnRzICRce3hfalx9X3tqPTF9XntcaW5mdHl9JCBhbmQgICRce3lfalx9X3tqPTF9XntcaW5mdHl9JCBhbmQgYSBzY2FsYXIgZnVuY3Rpb24gJGcodCkkIGFuZCBzZXQKXGJlZ2lue2FsaWdufQpcdGFnezR9CiAgICB1XzAocykgPSBcc3VtX3tqPTF9XntcaW5mdHl9IHhfaiBlX2oocylccXVhZCBcdGV4dHsgYW5kIH1ccXVhZAogICAgZihzLHQpID0gZyh0KSBcc3VtX3tqPTF9XntcaW5mdHl9IHlfaiBlX2oocykuClxlbmR7YWxpZ259CiBTdWJzdGl0dXRpbmcgdGhlc2UgZXhwcmVzc2lvbnMgaW50byB0aGUgc29sdXRpb24gZm9ybXVsYSBcZXFyZWZ7ZXE6c29sX3JlcHJlbnRhdGlvbn0sIHdlIG9idGFpbgpcYmVnaW57YWxpZ259ClxsYWJlbHtzb2xsbGx9Clx0YWd7NX0KICAgIHUocyx0KSA9IFxzdW1fe2o9MX1ee1xpbmZ0eX0oeF9qK3lfaiBHX2oodCkpZV57LVxsYW1iZGFee1xhbHBoYS8yfV9qdH1lX2oocyksXHF1YWQgR19qKHQpPSBcaW50XzBedCBlXntcbGFtYmRhXntcYWxwaGEvMn1fanJ9ZyhyKWRyLApcZW5ke2FsaWdufQp3aGVyZSB0aGUgaW50ZWdyYWwgY2FuIGJlIGV2YWx1YXRlZCBhbmFseXRpY2FsbHkgZm9yIHNvbWUgY2hvaWNlcyBvZiAkZyh0KSQsIGFzIHNob3duIGluIHRoZSAgW0Z1bmN0aW9uYWxpdHldKGZ1bmN0aW9uYWxpdHkuaHRtbCNleGFjdF9zb2x1dGlvbikgcGFnZS4gVGhlIGZvbGxvd2luZyBsaXN0IHNob3dzIGhvdyB0aGUgYWJvdmUgZXhwcmVzc2lvbnMgYXJlIGltcGxlbWVudGVkIGluICRcdGV4dHR0e1J9JC4KXGJlZ2lue2FsaWduZWR9Clx0ZXh0e2V4cHJlc3Npb259IFxpZmYmXHF1YWQgXHRleHR7SW4gfSBcdGV4dHR0e1J9XFwKXHt4X2pcfV97aj0xfV57XGluZnR5fSBcaWZmJlxxdWFkICBcdGV4dHR0e2NvZWZmX1VfMH1cXApce3lfalx9X3tqPTF9XntcaW5mdHl9IFxpZmYmXHF1YWQgIFx0ZXh0dHR7Y29lZmZfRkZ9XFwKW2VfMSBlXzIgXGRvdHMgZV97Tl9mfV0gXGlmZiZccXVhZCAgXHRleHR0dHtFSUdFTkZVTn1cXAp1XzAocykgXGlmZiZccXVhZCAgXHRleHR0dHtVXzAgPC0gRUlHRU5GVU4gJSolIGNvZWZmX1VfMH1cXApmKHMsdCkgXGlmZiZccXVhZCAgXHRleHR0dHtGRl90cnVlIDwtIEVJR0VORlVOICUqJX1cXAomXHF1YWRcdGV4dHR0eyBvdXRlcigxOmxlbmd0aChjb2VmZl9GRiksfVxcCiZccXF1YWRccXF1YWRcdGV4dHR0eyAxOmxlbmd0aCh0aW1lX3NlcSksfVxcCiZccXF1YWRccXF1YWRcdGV4dHR0eyBmdW5jdGlvbihpLCBqKSBjb2VmZl9GRltpXSAqIGdfc2luKHIgPSB0aW1lX3NlcVtqXSwgQSA9IEFBQSwgb21lZ2EgPSBPTUVHQSkpfVxcCnUocyx0KSBcaWZmJlxxdWFkICBcdGV4dHR0e1VfdHJ1ZSA8LSBFSUdFTkZVTiAlKiV9XFwKJlxxdWFkXHRleHR0dHsgb3V0ZXIoMTpsZW5ndGgoY29lZmZfVV8wKSx9XFwKJlxxcXVhZFxxcXVhZFx0ZXh0dHR7IDE6bGVuZ3RoKHRpbWVfc2VxKSx9XFwKJlxxcXVhZFxxcXVhZFx0ZXh0dHR7IGZ1bmN0aW9uKGksIGopIChjb2VmZl9VXzBbaV0gKyBjb2VmZl9GRltpXSAqIEdfc2luKHQgPSB0aW1lX3NlcVtqXSwgQSA9IEFBQSwgbGFtYmRhX2pfYWxwaGFfaGFsZiA9IEVJR0VOVkFMX0FMUEhBW2ldLCBvbWVnYSA9IE9NRUdBKSkgKn1cXAomXHFxdWFkXHFxdWFkXHFxdWFkXHFxdWFkXHFxdWFkXHFxdWFkXHF1YWRcdGV4dHR0e2V4cCgtRUlHRU5WQUxfQUxQSEFbaV0gKiB0aW1lX3NlcVtqXSkpfQpcZW5ke2FsaWduZWR9CgpMZXQgdXMgY2hlY2sgdGhhdCBcZXFyZWZ7c29sbGxsfSBpcyBhIHNvbHV0aW9uIG9mIFxlcXJlZntlcTptYWluZXF9LiBBdCAkdD0wJCwgd2UgZ2V0ClxiZWdpbnthbGlnbip9CiAgICB1KHMsMCkgPSBcc3VtX3tqPTF9XntcaW5mdHl9KHhfait5X2ogR19qKDApKWVeey1cbGFtYmRhXntcYWxwaGEvMn1fajB9ZV9qKHMpID0gXHN1bV97aj0xfV57XGluZnR5fXhfamVfaihzKSA9dV8wKHMpLApcZW5ke2FsaWduKn0Kd2hpbGUgZm9yICQocyx0KSBcaW4gXEdhbW1hIFx0aW1lcyAoMCwgVCkkLCB3ZSBvYnRhaW4KXGJlZ2lue2FsaWduKn0KICAgIFxwYXJ0aWFsX3QgdShzLHQpID0gXHN1bV97aj0xfV57XGluZnR5fXlfaiBHJ19qKHQpZV57LVxsYW1iZGFee1xhbHBoYS8yfV9qdH1lX2oocykgLSBcc3VtX3tqPTF9XntcaW5mdHl9KHhfait5X2ogR19qKHQpKWVeey1cbGFtYmRhXntcYWxwaGEvMn1fanR9XGxhbWJkYV57XGFscGhhLzJ9X2plX2oocykKXGVuZHthbGlnbip9CmFuZApcYmVnaW57YWxpZ24qfQogICAgKFxrYXBwYV4yIC0gXERlbHRhX1xHYW1tYSlee1xhbHBoYS8yfSB1KHMsdCkgJj0gXHN1bV97aj0xfV57XGluZnR5fSh4X2oreV9qIEdfaih0KSllXnstXGxhbWJkYV57XGFscGhhLzJ9X2p0fShca2FwcGFeMiAtIFxEZWx0YV9cR2FtbWEpXntcYWxwaGEvMn1lX2oocylcXAogICAgJj0gXHN1bV97aj0xfV57XGluZnR5fSh4X2oreV9qIEdfaih0KSllXnstXGxhbWJkYV57XGFscGhhLzJ9X2p0fVxsYW1iZGFee1xhbHBoYS8yfV9qZV9qKHMpLgpcZW5ke2FsaWduKn0KQWRkaW5nIHRoZXNlIHR3byBhbmQgdXNpbmcgdGhlIGZhY3QgdGhhdCAkRydfaih0KSA9IGVee1xsYW1iZGFee1xhbHBoYS8yfV9qdH1nKHQpJCB5aWVsZApcYmVnaW57YWxpZ24qfQogICAgXHBhcnRpYWxfdCB1KHMsdCkgKyAoXGthcHBhXjIgLSBcRGVsdGFfXEdhbW1hKV57XGFscGhhLzJ9IHUocyx0KSY9IGcodClcc3VtX3tqPTF9XntcaW5mdHl9eV9qZV57XGxhbWJkYV57XGFscGhhLzJ9X2p0fSBlXnstXGxhbWJkYV57XGFscGhhLzJ9X2p0fWVfaihzKSA9IGYocyx0KS4KXGVuZHthbGlnbip9ClRoaXMgc2hvd3MgdGhhdCBcZXFyZWZ7c29sbGxsfSBpcyBpbmRlZWQgYSBzb2x1dGlvbiBvZiBcZXFyZWZ7ZXE6bWFpbmVxfS4KCkZyb20gdGhlIFtGdW5jdGlvbmFsaXR5XShmdW5jdGlvbmFsaXR5Lmh0bWwjbnVtX3NjaGVtZSkgcGFnZSwgd2Uga25vdyB0aGF0IHRoZSBzb2x1dGlvbiB0byBcZXFyZWZ7ZXE6bWFpbmVxfSBjYW4gYmUgYXBwcm94aW1hdGVkIGJ5IGEgbnVtZXJpY2FsIHNjaGVtZSBvZiB0aGUgZm9ybQpcYmVnaW57ZXF1YXRpb259ClxsYWJlbHtlcTpmaW5hbF9zY2hlbWUyfQpcdGFnezZ9Clxib2xkc3ltYm9se1V9XntrKzF9ID0gXGJvbGRzeW1ib2x7Q31eey0xfVxsZWZ0KFxzdW1fe2s9MX1ee20rMX0gYV9rXGxlZnQoIFxkZnJhY3tcYm9sZHN5bWJvbHtMfVxib2xkc3ltYm9se0N9XnstMX19e1xrYXBwYV4yfS1wX2tcYm9sZHN5bWJvbHtJfVxyaWdodCleey0xfSArIHJcYm9sZHN5bWJvbHtJfVxyaWdodCkgKFxib2xkc3ltYm9se0N9XGJvbGRzeW1ib2x7VX1eaytcdGF1IFxib2xkc3ltYm9se0Z9XntrKzF9KQpcZW5ke2VxdWF0aW9ufQpMZXQgJFxib2xkc3ltYm9se0Z9JCBiZSB0aGUgbWF0cml4IHdpdGggY29sdW1ucyAkXGJvbGRzeW1ib2x7Rn1eayQuIFRoaXMgbWF0cml4IGhhcyBlbnRyaWVzICRcYm9sZHN5bWJvbHtGfV97aWt9JCBnaXZlbiBieQpcYmVnaW57YWxpZ259ClxsYWJlbHtlcTppbm5lcnByb2R9Clx0YWd7N30KICAgIChmXntrfSxccHNpXmlfaClfe0xfMihcR2FtbWEpfSA9IChmKFxjZG90LHRfayksXHBzaV5pX2gpX3tMXzIoXEdhbW1hKX0gPSBcc3VtX3tqPTF9XntOX2Z9IHlfaiBnKHRfaykgKGVfaixccHNpXmlfaClfe0xfMihcR2FtbWEpfS4KXGVuZHthbGlnbn0KVG8gYXBwcm94aW1hdGUgdGhlIGlubmVyIHByb2R1Y3RzICQoZV9qLFxwc2leaV9oKV97TF8yKFxHYW1tYSl9JCwgd2UgdXNlIHRoZSBxdWFkcmF0dXJlIGZvcm11bGEgJFxib2xkc3ltYm9se1xwc2l9X2leXHRvcFxib2xkc3ltYm9se0N9XntcdGV4dHtva319XGJvbGRzeW1ib2x7ZX1faiQsIHdoZXJlICRcYm9sZHN5bWJvbHtlfV9qPVtlX2ooc18xKVxkb3RzIGVfaihzX3tOX3toX3tcdGV4dHtva319fX0pXV5cdG9wJCBhbmQgJFxib2xkc3ltYm9se1xwc2l9X2k9W1xwc2leaV9oKHNfMSlcZG90cyBccHNpXmlfaChzX3tOX3toX3tcdGV4dHtva319fX0pXV5cdG9wJCAgYXJlIHZlY3RvcnMgb2YgZnVuY3Rpb24gZXZhbHVhdGlvbnMgb24gYSBmaW5lIHNwYXRpYWwgbWVzaCB3aXRoIG1lc2ggc2l6ZSAkaF97XHRleHR7b2t9fSQgYW5kIG5vZGVzICRce3NfXGVsbFx9X3tcZWxsPTF9XntOX3toX3tcdGV4dHtva319fX0kLiBNYXRyaXggJFxib2xkc3ltYm9se0N9XntcdGV4dHtva319JCBjb250YWlucyB0aGUgY29ycmVzcG9uZGluZyBxdWFkcmF0dXJlIHdlaWdodHMsIHdpdGggZW50cmllcyAkXGJvbGRzeW1ib2x7Q31ee1x0ZXh0e29rfX1fe25tfSA9IChccHNpX3toX1x0ZXh0e29rfX1ebixccHNpX3toX1x0ZXh0e29rfX1ebSlfe0xfMihcR2FtbWEpfSQgZm9yICRuLG0gPSAxLFxkb3RzLCBOX3toX1x0ZXh0e29rfX0kLiBXZSBlbXBoYXNpemUgdGhhdCB0d28gc3BhdGlhbCBtZXNoZXMgYXJlIGludm9sdmVkIGluIHRoaXMgY29uc3RydWN0aW9uLiBUaGUgYmFzaXMgZnVuY3Rpb25zICRce1xwc2leaV9oXH1fe2k9MX1ee05faH0kIGFyZSBkZWZpbmVkIG9uIGEgY29hcnNlIHNwYXRpYWwgbWVzaCB3aXRoIG1lc2ggc2l6ZSAkaCQsIHdoaWxlIHRoZSBxdWFkcmF0dXJlIGlzIGNhcnJpZWQgb3V0IG92ZXIgYSBmaW5lciBtZXNoIHdpdGggYXNzb2NpYXRlZCBiYXNpcyBmdW5jdGlvbnMgJFx7XHBzaV5cZWxsX3toX1x0ZXh0e29rfX1cfV97XGVsbD0xfV57Tl97aF9cdGV4dHtva319fSQgYW5kIG1lc2ggc2l6ZSAkaF9cdGV4dHtva30kLiBJZiAkXGJvbGRzeW1ib2x7Tn0kIGRlbm90ZXMgdGhlIG1hdHJpeCB3aXRoIGVudHJpZXMgJFxib2xkc3ltYm9se059X3tqa30gPSB5X2ogZyh0X2spJCwgdGhlbiAkXGJvbGRzeW1ib2x7Rn0kIGNhbiBiZSBhcHByb3hpbWF0ZWQgYXMgJFtcYm9sZHN5bWJvbHtccHNpfV8xXGRvdHMgXGJvbGRzeW1ib2x7XHBzaX1fe05faH1dXlx0b3AgXGJvbGRzeW1ib2x7Q31ee1x0ZXh0e29rfX0gW1xib2xkc3ltYm9se2V9XzFcZG90cyBcYm9sZHN5bWJvbHtlfV97Tl9mfV0gXGJvbGRzeW1ib2x7Tn0kLiBJbiAkXHRleHR0dHtSfSQsICAkXGJvbGRzeW1ib2x7Rn0kIGFuZCAkXGJvbGRzeW1ib2x7VX1ee2srMX0kIGFyZSBpbXBsZW1lbnRlZCBhcwpcYmVnaW57YWxpZ25lZH0KXHRleHR7ZXhwcmVzc2lvbn0gXGlmZiZccXVhZCBcdGV4dHtJbiB9IFx0ZXh0dHR7Un1cXApbXGJvbGRzeW1ib2x7XHBzaX1fMVxkb3RzIFxib2xkc3ltYm9se1xwc2l9X3tOX2h9XV5cdG9wIFxpZmYmXHF1YWQgXHRleHR0dHt0KGdyYXBoXCRmZW1fYmFzaXMob3ZlcmtpbGxfZ3JhcGhcJGdldF9tZXNoX2xvY2F0aW9ucygpKSl9XFwKXGJvbGRzeW1ib2x7Q31ee1x0ZXh0e29rfX0gXGlmZiZccXVhZCBcdGV4dHR0e292ZXJraWxsX2dyYXBoXCRtZXNoXCRDfVxcCltcYm9sZHN5bWJvbHtlfV8xXGRvdHMgXGJvbGRzeW1ib2x7ZX1fe05fZn1dIFxpZmYmXHF1YWQgXHRleHR0dHtvdmVya2lsbF9FSUdFTkZVTn1cXApcYm9sZHN5bWJvbHtOfSBcaWZmJlxxdWFkIFx0ZXh0dHR7b3V0ZXIoMTpsZW5ndGgoY29lZmZfRkYpLH1cXAomXHFxdWFkXHF1YWRcO1w7XHRleHR0dHsgMTpsZW5ndGgodGltZV9zZXEpLH1cXAomXHFxdWFkXHF1YWRcO1w7XHRleHR0dHsgZnVuY3Rpb24oaSwgaikgY29lZmZfRkZbaV0gKiBnX3NpbihyID0gdGltZV9zZXFbal0sIEEgPSBBQUEsIG9tZWdhID0gT01FR0EpKX1cXApcYm9sZHN5bWJvbHtGfVxpZmYmXHF1YWQgIFx0ZXh0dHR7RkZfaW5uZXJwcm9kIDwtIHQoZ3JhcGhcJGZlbV9iYXNpcyhvdmVya2lsbF9ncmFwaFwkZ2V0X21lc2hfbG9jYXRpb25zKCkpKSAlKiV9XFwKJlxxdWFkXHRleHR0dHtvdmVya2lsbF9ncmFwaFwkbWVzaFwkQyAlKiV9XFwKJlxxdWFkXHRleHR0dHtvdmVya2lsbF9FSUdFTkZVTiAlKiV9XFwKJlxxdWFkXHRleHR0dHtvdXRlcigxOmxlbmd0aChjb2VmZl9GRiksfVxcCiZccXF1YWRccXF1YWRcdGV4dHR0ezE6bGVuZ3RoKHRpbWVfc2VxKSx9XFwKJlxxcXVhZFxxcXVhZFx0ZXh0dHR7ZnVuY3Rpb24oaSwgaikgY29lZmZfRkZbaV0gKiBnX3NpbihyID0gdGltZV9zZXFbal0sIEEgPSBBQUEsIG9tZWdhID0gT01FR0EpKX1cXApcYm9sZHN5bWJvbHtVfV57aysxfVxpZmYmXHF1YWQgXHRleHR0dHtVX2FwcHJveFssIGsgKyAxXSA8LSBhcy5tYXRyaXgobXkuc29sdmVyLmZyYWMobXlfb3BfZnJhYywgbXlfb3BfZnJhY1wkQyAlKiUgVV9hcHByb3hbLCBrXSArIHRpbWVfc3RlcCAqIEZGX2lubmVycHJvZFssIGsgKyAxXSkpfQpcZW5ke2FsaWduZWR9CgpgYGB7cn0KVF9maW5hbCA8LSAyCnRpbWVfc3RlcCA8LSAwLjAwMSAKaCA8LSAwLjAwMSAKa2FwcGEgPC0gMTUKYWxwaGEgPC0gMC41IAptID0gMQpiZXRhIDwtIGFscGhhLzIKTl9maW5pdGUgPSA0ICMgY2hvb3NlIGV2ZW4KYWRqdXN0ZWRfTl9maW5pdGUgPC0gTl9maW5pdGUgKyBOX2Zpbml0ZS8yICsgMQojIENvZWZmaWNpZW50cyBmb3IgdV8wIGFuZCBmCmNvZWZmX1VfMCA8LSA1MCooMTphZGp1c3RlZF9OX2Zpbml0ZSleLTEKY29lZmZfVV8wWy01XSA8LSAwCmNvZWZmX0ZGIDwtIHJlcCgwLCBhZGp1c3RlZF9OX2Zpbml0ZSkKY29lZmZfRkZbN10gPC0gMTAKCgp0aW1lX3NlcSA8LSBzZXEoMCwgVF9maW5hbCwgYnkgPSB0aW1lX3N0ZXApCmdyYXBoIDwtIGdldHMuZ3JhcGgudGFkcG9sZShoID0gaCkKZ3JhcGgkY29tcHV0ZV9mZW0oKQpHIDwtIGdyYXBoJG1lc2gkRwpDIDwtIGdyYXBoJG1lc2gkQwpMIDwtIGthcHBhXjIqQyArIEcKSSA8LSBNYXRyaXg6OkRpYWdvbmFsKG5yb3coQykpCgplaWdlbl9wYXJhbXMgPC0gZ2V0cy5laWdlbi5wYXJhbXMoTl9maW5pdGUgPSBOX2Zpbml0ZSwga2FwcGEgPSBrYXBwYSwgYWxwaGEgPSBhbHBoYSwgZ3JhcGggPSBncmFwaCkKRUlHRU5WQUxfQUxQSEEgPC0gZWlnZW5fcGFyYW1zJEVJR0VOVkFMX0FMUEhBCkVJR0VORlVOIDwtIGVpZ2VuX3BhcmFtcyRFSUdFTkZVTgoKQUFBID0gMQpPTUVHQSA9IHBpCgpVXzAgPC0gRUlHRU5GVU4gJSolIGNvZWZmX1VfMAoKVV90cnVlIDwtIEVJR0VORlVOICUqJSAKICBvdXRlcigxOmxlbmd0aChjb2VmZl9VXzApLCAKICAgICAgICAxOmxlbmd0aCh0aW1lX3NlcSksIAogICAgICAgIGZ1bmN0aW9uKGksIGopIChjb2VmZl9VXzBbaV0gKyBjb2VmZl9GRltpXSAqIEdfc2luKHQgPSB0aW1lX3NlcVtqXSwgQSA9IEFBQSwgbGFtYmRhX2pfYWxwaGFfaGFsZiA9IEVJR0VOVkFMX0FMUEhBW2ldLCBvbWVnYSA9IE9NRUdBKSApICogZXhwKC1FSUdFTlZBTF9BTFBIQVtpXSAqIHRpbWVfc2VxW2pdKSkKCm92ZXJraWxsX2dyYXBoIDwtIGdldHMuZ3JhcGgudGFkcG9sZShoID0gMC4wMDAxKQpvdmVya2lsbF9ncmFwaCRjb21wdXRlX2ZlbSgpCm92ZXJraWxsX0VJR0VORlVOIDwtIGdldHMuZWlnZW4ucGFyYW1zKE5fZmluaXRlID0gTl9maW5pdGUsIGthcHBhID0ga2FwcGEsIGFscGhhID0gYWxwaGEsIGdyYXBoID0gb3ZlcmtpbGxfZ3JhcGgpJEVJR0VORlVOCgoKRkZfaW5uZXJwcm9kIDwtIHQoZ3JhcGgkZmVtX2Jhc2lzKG92ZXJraWxsX2dyYXBoJGdldF9tZXNoX2xvY2F0aW9ucygpKSkgJSolCiAgb3ZlcmtpbGxfZ3JhcGgkbWVzaCRDICUqJQogIG92ZXJraWxsX0VJR0VORlVOICUqJQogIG91dGVyKDE6bGVuZ3RoKGNvZWZmX0ZGKSwgCiAgICAgICAgMTpsZW5ndGgodGltZV9zZXEpLCAKICAgICAgICBmdW5jdGlvbihpLCBqKSBjb2VmZl9GRltpXSAqIGdfc2luKHIgPSB0aW1lX3NlcVtqXSwgQSA9IEFBQSwgb21lZ2EgPSBPTUVHQSkpCgpGRl90cnVlIDwtIEVJR0VORlVOICUqJSBvdXRlcigxOmxlbmd0aChjb2VmZl9GRiksIAogICAgICAgICAgICAgICAgICAgICAgICAgMTpsZW5ndGgodGltZV9zZXEpLCAKICAgICAgICAgICAgICAgICAgICAgICAgIGZ1bmN0aW9uKGksIGopIGNvZWZmX0ZGW2ldICogZ19zaW4ociA9IHRpbWVfc2VxW2pdLCBBID0gQUFBLCBvbWVnYSA9IE9NRUdBKSkKCiMgTnVtZXJpY2FsIHNvbHV0aW9uCm15X29wX2ZyYWMgPC0gbXkuZnJhY3Rpb25hbC5vcGVyYXRvcnMuZnJhYyhMLCBiZXRhLCBDLCBzY2FsZS5mYWN0b3IgPSBrYXBwYV4yLCBtID0gbSwgdGltZV9zdGVwKQoKVV9hcHByb3ggPC0gc29sdmVfZnJhY3Rpb25hbF9ldm9sdXRpb24obXlfb3BfZnJhYywgdGltZV9zdGVwLCB0aW1lX3NlcSwgdmFsX2F0XzAgPSBVXzAsIFJIU1QgPSBGRl9pbm5lcnByb2QpCgplcnJvciA8LSBzcXJ0KGFzLmRvdWJsZSh0KGdyYXBoJG1lc2gkd2VpZ2h0cykgJSolIChVX3RydWUgLSBVX2FwcHJveCleMiAlKiUgcmVwKHRpbWVfc3RlcCwgbmNvbChVX3RydWUpKSkpCmBgYAoKVGhlIGZvbGxvd2luZyBpcyB0aGUgZXJyb3IgcmVwb3J0ZWQgaW4gdGhlIHBhcGVyIGZvciB0aGUgY29uc2lkZXJlZCBleHBlcmltZW50LgoKYGBge3J9CnByaW50KHBhc3RlMCgiVG90YWwgZXJyb3IgPSAiLCBmb3JtYXRDKGVycm9yLCBmb3JtYXQgPSAiZiIsIGRpZ2l0cyA9IDkpKSkKYGBgCgpCZWNhdXNlIG9mIEdpdEh1YiBzdG9yYWdlIGxpbWl0cywgd2UgcHJvamVjdCB0aGUgc29sdXRpb24gKGFuZCBhbGwgb3RoZXIgdmlzdWFsaXphdGlvbnMpIHRvIGEgY29hcnNlciBtZXNoIGFzIGZvbGxvd3MuCgpgYGB7cn0KYXV4X2dyYXBoIDwtIGdldHMuZ3JhcGgudGFkcG9sZShoID0gMC4wMSkKQV9wcm9qIDwtIGdyYXBoJGZlbV9iYXNpcyhhdXhfZ3JhcGgkZ2V0X21lc2hfbG9jYXRpb25zKCkpCkZGX3RydWUgPC0gQV9wcm9qICUqJSBGRl90cnVlClVfdHJ1ZSA8LSBBX3Byb2ogJSolIFVfdHJ1ZQpVX2FwcHJveCA8LSBBX3Byb2ogJSolIFVfYXBwcm94CmBgYAoKCmBgYHtyLCBmaWcuaGVpZ2h0ID0gNiwgb3V0LndpZHRoID0gIjEwMCUiLCBmaWcuY2FwID0gY2FwdGlvbmVyKCJUaW1lIGV2b2x1dGlvbiBvZiB0aGUgcmlnaHQtaGFuZCBzaWRlIGZ1bmN0aW9uICRmJC4iKX0Kc3RhcnRfaWR4IDwtIHdoaWNoLm1pbihhYnModGltZV9zZXEgLSAwLjUpKQplbmRfaWR4IDwtIHdoaWNoLm1pbihhYnModGltZV9zZXEgLSAxLjUpKQppZHggPC0gc2VxKHN0YXJ0X2lkeCwgZW5kX2lkeCwgYnkgPSA0KQpncmFwaC5wbG90dGVyLjNkLnNpbmdsZShhdXhfZ3JhcGgsIEZGX3RydWVbLCBpZHhdLCB0aW1lX3NlcVtpZHhdKQpgYGAKCgpgYGB7ciwgZmlnLmhlaWdodCA9IDYsIG91dC53aWR0aCA9ICIxMDAlIiwgZmlnLmNhcCA9IGNhcHRpb25lcigiVGltZSBldm9sdXRpb24gb2YgdGhlIGFic29sdXRlIGRpZmZlcmVuY2UgYmV0d2VlbiB0aGUgZXhhY3QgYW5kIGFwcHJveGltYXRlIHNvbHV0aW9uLiIpfQphYnNfZXJyb3IgPC0gYWJzKFVfdHJ1ZVssIGlkeF0gLSBVX2FwcHJveFssIGlkeF0pCmdyYXBoLnBsb3R0ZXIuM2Quc2luZ2xlKGF1eF9ncmFwaCwgYWJzX2Vycm9yLCB0aW1lX3NlcVtpZHhdKQpgYGAKCgpgYGB7ciwgZmlnLmhlaWdodCA9IDYsIG91dC53aWR0aCA9ICIxMDAlIiwgZmlnLmNhcCA9IGNhcHRpb25lcigiQ29tcGFyaXNvbiBvZiB0aGUgZXhhY3QgYW5kIGFwcHJveGltYXRlIHNvbHV0aW9uIGF0IHNlbGVjdGVkIHRpbWUgcG9pbnRzLiIpfQppZHgyIDwtIHNlcShzdGFydF9pZHgsIGVuZF9pZHgsIGJ5ID0gMTApCmdyYXBoLnBsb3R0ZXIuM2QuY29tcGFyZXIoYXV4X2dyYXBoLCBVX3RydWVbLGlkeDJdLCBVX2FwcHJveFssaWR4Ml0sIHRpbWVfc2VxW2lkeDJdKQpgYGAKCgojIyBSZWZlcmVuY2VzCgpgYGB7cn0KZ3JhdGVmdWw6OmNpdGVfcGFja2FnZXMob3V0cHV0ID0gInBhcmFncmFwaCIsIG91dC5kaXIgPSAiLiIpCmBgYAoK