Go back to the Contents page.


Press Show to reveal the code chunks.


Let us set some global options for all code chunks in this document.

# Create a clipboard button
source(here::here("clipboard.R")); clipboard
# Set seed for reproducibility
set.seed(1982) 
# Set global options for all code chunks
knitr::opts_chunk$set(
  # Disable messages printed by R code chunks
  message = FALSE,    
  # Disable warnings printed by R code chunks
  warning = FALSE,    
  # Show R code within code chunks in output
  echo = TRUE,        
  # Include both R code and its results in output
  include = TRUE,     
  # Evaluate R code chunks
  eval = TRUE,       
  # Enable caching of R code chunks for faster rendering
  cache = FALSE,      
  # Align figures in the center of the output
  fig.align = "center",
  # Enable retina display for high-resolution figures
  retina = 2,
  # Show errors in the output instead of stopping rendering
  error = TRUE,
  # Do not collapse code and output into a single block
  collapse = FALSE
)
# Start the figure counter
fig_count <- 0
# Define the captioner function
captioner <- function(caption) {
  fig_count <<- fig_count + 1
  paste0("Figure ", fig_count, ": ", caption)
}
# remotes::install_github("davidbolin/rspde", ref = "devel")
# remotes::install_github("davidbolin/metricgraph", ref = "devel")
library(rSPDE)
library(MetricGraph)
library(grateful)

library(ggplot2)
library(reshape2)
library(plotly)
capture.output(
  knitr::purl(here::here("functionality.Rmd"), output = here::here("functionality.R")),
  file = here::here("purl_log.txt")
)
source(here::here("functionality.R"))

1 The equation

We analyze and numerically approximate solutions to fractional diffusion equations on metric graphs of the form \[\begin{equation} \label{eq:maineq} \tag{1} \left\{ \begin{aligned} \partial_t u(s,t) + (\kappa^2 - \Delta_\Gamma)^{\alpha/2} u(s,t) &= f(s,t), && \quad (s,t) \in \Gamma \times (0, T), \\ u(s,0) &= u_0(s), && \quad s \in \Gamma, \end{aligned} \right. \end{equation}\] with \(u(\cdot,t)\) satisfying the Kirchhoff vertex conditions \[\begin{equation} \label{eq:Kcond} \tag{2} \mathcal{K} = \left\{\phi\in C(\Gamma)\;\middle|\; \forall v\in \mathcal{V}:\; \textstyle\sum_{e\in\mathcal{E}_v}\partial_e \phi(v)=0 \right\}. \end{equation}\] Here \(\Gamma = (\mathcal{V},\mathcal{E})\) is a metric graph, \(\kappa>0\), \(\alpha\in(0,2]\) determines the smoothness of \(u(\cdot,t)\), \(\Delta_{\Gamma}\) is the so-called Kirchhoff–Laplacian, and \(f:\Gamma\times (0,T)\to\mathbb{R}\) and \(u_0: \Gamma \to \mathbb{R}\) are fixed functions, called right-hand side and initial condition, respectively.

2 Eigenfunction-based construction of an exact solution

The exact solution to \(\eqref{eq:maineq}\) can be expressed as \[\begin{equation} \label{eq:sol_reprentation} \tag{3} u(s,t) = \displaystyle\sum_{j\in\mathbb{N}}e^{-\lambda^{\alpha/2}_jt}\left(u_0, e_j\right)_{L_2(\Gamma)}e_j(s) + \int_0^t \displaystyle\sum_{j\in\mathbb{N}}e^{-\lambda^{\alpha/2}_j(t-r)}\left(f(\cdot, r), e_j\right)_{L_2(\Gamma)}e_j(s)dr. \end{equation}\]

To construct an exact solution, we expand both the initial condition and the right-hand side in terms of the eigenfunctions. We choose coefficients \(\{x_j\}_{j=1}^{\infty}\) and \(\{y_j\}_{j=1}^{\infty}\) and a scalar function \(g(t)\) and set \[\begin{align} \tag{4} u_0(s) = \sum_{j=1}^{\infty} x_j e_j(s)\quad \text{ and }\quad f(s,t) = g(t) \sum_{j=1}^{\infty} y_j e_j(s). \end{align}\] Substituting these expressions into the solution formula \(\eqref{eq:sol_reprentation}\), we obtain \[\begin{align} \label{sollll} \tag{5} u(s,t) = \sum_{j=1}^{\infty}(x_j+y_j G_j(t))e^{-\lambda^{\alpha/2}_jt}e_j(s),\quad G_j(t)= \int_0^t e^{\lambda^{\alpha/2}_jr}g(r)dr, \end{align}\] where the integral can be evaluated analytically for some choices of \(g(t)\), as shown in the Functionality page. The following list shows how the above expressions are implemented in \(\texttt{R}\). \[\begin{aligned} \text{expression} \iff&\quad \text{In } \texttt{R}\\ \{x_j\}_{j=1}^{\infty} \iff&\quad \texttt{coeff_U_0}\\ \{y_j\}_{j=1}^{\infty} \iff&\quad \texttt{coeff_FF}\\ [e_1 e_2 \dots e_{N_f}] \iff&\quad \texttt{EIGENFUN}\\ u_0(s) \iff&\quad \texttt{U_0 <- EIGENFUN %*% coeff_U_0}\\ f(s,t) \iff&\quad \texttt{FF_true <- EIGENFUN %*%}\\ &\quad\texttt{ outer(1:length(coeff_FF),}\\ &\qquad\qquad\texttt{ 1:length(time_seq),}\\ &\qquad\qquad\texttt{ function(i, j) coeff_FF[i] * g_sin(r = time_seq[j], A = AAA, omega = OMEGA))}\\ u(s,t) \iff&\quad \texttt{U_true <- EIGENFUN %*%}\\ &\quad\texttt{ outer(1:length(coeff_U_0),}\\ &\qquad\qquad\texttt{ 1:length(time_seq),}\\ &\qquad\qquad\texttt{ function(i, j) (coeff_U_0[i] + coeff_FF[i] * G_sin(t = time_seq[j], A = AAA, lambda_j_alpha_half = EIGENVAL_ALPHA[i], omega = OMEGA)) *}\\ &\qquad\qquad\qquad\qquad\qquad\qquad\quad\texttt{exp(-EIGENVAL_ALPHA[i] * time_seq[j]))} \end{aligned}\]

Let us check that \(\eqref{sollll}\) is a solution of \(\eqref{eq:maineq}\). At \(t=0\), we get \[\begin{align*} u(s,0) = \sum_{j=1}^{\infty}(x_j+y_j G_j(0))e^{-\lambda^{\alpha/2}_j0}e_j(s) = \sum_{j=1}^{\infty}x_je_j(s) =u_0(s), \end{align*}\] while for \((s,t) \in \Gamma \times (0, T)\), we obtain \[\begin{align*} \partial_t u(s,t) = \sum_{j=1}^{\infty}y_j G'_j(t)e^{-\lambda^{\alpha/2}_jt}e_j(s) - \sum_{j=1}^{\infty}(x_j+y_j G_j(t))e^{-\lambda^{\alpha/2}_jt}\lambda^{\alpha/2}_je_j(s) \end{align*}\] and \[\begin{align*} (\kappa^2 - \Delta_\Gamma)^{\alpha/2} u(s,t) &= \sum_{j=1}^{\infty}(x_j+y_j G_j(t))e^{-\lambda^{\alpha/2}_jt}(\kappa^2 - \Delta_\Gamma)^{\alpha/2}e_j(s)\\ &= \sum_{j=1}^{\infty}(x_j+y_j G_j(t))e^{-\lambda^{\alpha/2}_jt}\lambda^{\alpha/2}_je_j(s). \end{align*}\] Adding these two and using the fact that \(G'_j(t) = e^{\lambda^{\alpha/2}_jt}g(t)\) yield \[\begin{align*} \partial_t u(s,t) + (\kappa^2 - \Delta_\Gamma)^{\alpha/2} u(s,t)&= g(t)\sum_{j=1}^{\infty}y_je^{\lambda^{\alpha/2}_jt} e^{-\lambda^{\alpha/2}_jt}e_j(s) = f(s,t). \end{align*}\] This shows that \(\eqref{sollll}\) is indeed a solution of \(\eqref{eq:maineq}\).

From the Functionality page, we know that the solution to \(\eqref{eq:maineq}\) can be approximated by a numerical scheme of the form \[\begin{equation} \label{eq:final_scheme2} \tag{6} \boldsymbol{U}^{k+1} = \boldsymbol{C}^{-1}\left(\sum_{k=1}^{m+1} a_k\left( \dfrac{\boldsymbol{L}\boldsymbol{C}^{-1}}{\kappa^2}-p_k\boldsymbol{I}\right)^{-1} + r\boldsymbol{I}\right) (\boldsymbol{C}\boldsymbol{U}^k+\tau \boldsymbol{F}^{k+1}) \end{equation}\] Let \(\boldsymbol{F}\) be the matrix with columns \(\boldsymbol{F}^k\). This matrix has entries \(\boldsymbol{F}_{ik}\) given by \[\begin{align} \label{eq:innerprod} \tag{7} (f^{k},\psi^i_h)_{L_2(\Gamma)} = (f(\cdot,t_k),\psi^i_h)_{L_2(\Gamma)} = \sum_{j=1}^{N_f} y_j g(t_k) (e_j,\psi^i_h)_{L_2(\Gamma)}. \end{align}\] To approximate the inner products \((e_j,\psi^i_h)_{L_2(\Gamma)}\), we use the quadrature formula \(\boldsymbol{\psi}_i^\top\boldsymbol{C}^{\text{ok}}\boldsymbol{e}_j\), where \(\boldsymbol{e}_j=[e_j(s_1)\dots e_j(s_{N_{h_{\text{ok}}}})]^\top\) and \(\boldsymbol{\psi}_i=[\psi^i_h(s_1)\dots \psi^i_h(s_{N_{h_{\text{ok}}}})]^\top\) are vectors of function evaluations on a fine spatial mesh with mesh size \(h_{\text{ok}}\) and nodes \(\{s_\ell\}_{\ell=1}^{N_{h_{\text{ok}}}}\). Matrix \(\boldsymbol{C}^{\text{ok}}\) contains the corresponding quadrature weights, with entries \(\boldsymbol{C}^{\text{ok}}_{nm} = (\psi_{h_\text{ok}}^n,\psi_{h_\text{ok}}^m)_{L_2(\Gamma)}\) for \(n,m = 1,\dots, N_{h_\text{ok}}\). We emphasize that two spatial meshes are involved in this construction. The basis functions \(\{\psi^i_h\}_{i=1}^{N_h}\) are defined on a coarse spatial mesh with mesh size \(h\), while the quadrature is carried out over a finer mesh with associated basis functions \(\{\psi^\ell_{h_\text{ok}}\}_{\ell=1}^{N_{h_\text{ok}}}\) and mesh size \(h_\text{ok}\). If \(\boldsymbol{N}\) denotes the matrix with entries \(\boldsymbol{N}_{jk} = y_j g(t_k)\), then \(\boldsymbol{F}\) can be approximated as \([\boldsymbol{\psi}_1\dots \boldsymbol{\psi}_{N_h}]^\top \boldsymbol{C}^{\text{ok}} [\boldsymbol{e}_1\dots \boldsymbol{e}_{N_f}] \boldsymbol{N}\). In \(\texttt{R}\), \(\boldsymbol{F}\) and \(\boldsymbol{U}^{k+1}\) are implemented as \[\begin{aligned} \text{expression} \iff&\quad \text{In } \texttt{R}\\ [\boldsymbol{\psi}_1\dots \boldsymbol{\psi}_{N_h}]^\top \iff&\quad \texttt{t(graph\$fem_basis(overkill_graph\$get_mesh_locations()))}\\ \boldsymbol{C}^{\text{ok}} \iff&\quad \texttt{overkill_graph\$mesh\$C}\\ [\boldsymbol{e}_1\dots \boldsymbol{e}_{N_f}] \iff&\quad \texttt{overkill_EIGENFUN}\\ \boldsymbol{N} \iff&\quad \texttt{outer(1:length(coeff_FF),}\\ &\qquad\quad\;\;\texttt{ 1:length(time_seq),}\\ &\qquad\quad\;\;\texttt{ function(i, j) coeff_FF[i] * g_sin(r = time_seq[j], A = AAA, omega = OMEGA))}\\ \boldsymbol{F}\iff&\quad \texttt{FF_innerprod <- t(graph\$fem_basis(overkill_graph\$get_mesh_locations())) %*%}\\ &\quad\texttt{overkill_graph\$mesh\$C %*%}\\ &\quad\texttt{overkill_EIGENFUN %*%}\\ &\quad\texttt{outer(1:length(coeff_FF),}\\ &\qquad\qquad\texttt{1:length(time_seq),}\\ &\qquad\qquad\texttt{function(i, j) coeff_FF[i] * g_sin(r = time_seq[j], A = AAA, omega = OMEGA))}\\ \boldsymbol{U}^{k+1}\iff&\quad \texttt{U_approx[, k + 1] <- as.matrix(my.solver.frac(my_op_frac, my_op_frac\$C %*% U_approx[, k] + time_step * FF_innerprod[, k + 1]))} \end{aligned}\]
T_final <- 2
time_step <- 0.001 
h <- 0.001 
kappa <- 15
alpha <- 0.5 
m = 1
beta <- alpha/2
N_finite = 4 # choose even
adjusted_N_finite <- N_finite + N_finite/2 + 1
# Coefficients for u_0 and f
coeff_U_0 <- 50*(1:adjusted_N_finite)^-1
coeff_U_0[-5] <- 0
coeff_FF <- rep(0, adjusted_N_finite)
coeff_FF[7] <- 10


time_seq <- seq(0, T_final, by = time_step)
graph <- gets.graph.tadpole(h = h)
graph$compute_fem()
G <- graph$mesh$G
C <- graph$mesh$C
L <- kappa^2*C + G
I <- Matrix::Diagonal(nrow(C))

eigen_params <- gets.eigen.params(N_finite = N_finite, kappa = kappa, alpha = alpha, graph = graph)
EIGENVAL_ALPHA <- eigen_params$EIGENVAL_ALPHA
EIGENFUN <- eigen_params$EIGENFUN

AAA = 1
OMEGA = pi

U_0 <- EIGENFUN %*% coeff_U_0

U_true <- EIGENFUN %*% 
  outer(1:length(coeff_U_0), 
        1:length(time_seq), 
        function(i, j) (coeff_U_0[i] + coeff_FF[i] * G_sin(t = time_seq[j], A = AAA, lambda_j_alpha_half = EIGENVAL_ALPHA[i], omega = OMEGA) ) * exp(-EIGENVAL_ALPHA[i] * time_seq[j]))

overkill_graph <- gets.graph.tadpole(h = 0.0001)
overkill_graph$compute_fem()
overkill_EIGENFUN <- gets.eigen.params(N_finite = N_finite, kappa = kappa, alpha = alpha, graph = overkill_graph)$EIGENFUN


FF_innerprod <- t(graph$fem_basis(overkill_graph$get_mesh_locations())) %*%
  overkill_graph$mesh$C %*%
  overkill_EIGENFUN %*%
  outer(1:length(coeff_FF), 
        1:length(time_seq), 
        function(i, j) coeff_FF[i] * g_sin(r = time_seq[j], A = AAA, omega = OMEGA))

FF_true <- EIGENFUN %*% outer(1:length(coeff_FF), 
                         1:length(time_seq), 
                         function(i, j) coeff_FF[i] * g_sin(r = time_seq[j], A = AAA, omega = OMEGA))

# Numerical solution
my_op_frac <- my.fractional.operators.frac(L, beta, C, scale.factor = kappa^2, m = m, time_step)

U_approx <- solve_fractional_evolution(my_op_frac, time_step, time_seq, val_at_0 = U_0, RHST = FF_innerprod)

error <- sqrt(as.double(t(graph$mesh$weights) %*% (U_true - U_approx)^2 %*% rep(time_step, ncol(U_true))))

The following is the error reported in the paper for the considered experiment.

print(paste0("Total error = ", formatC(error, format = "f", digits = 9)))
## [1] "Total error = 0.004003178"

Because of GitHub storage limits, we project the solution (and all other visualizations) to a coarser mesh as follows.

aux_graph <- gets.graph.tadpole(h = 0.01)
A_proj <- graph$fem_basis(aux_graph$get_mesh_locations())
FF_true <- A_proj %*% FF_true
U_true <- A_proj %*% U_true
U_approx <- A_proj %*% U_approx
start_idx <- which.min(abs(time_seq - 0.5))
end_idx <- which.min(abs(time_seq - 1.5))
idx <- seq(start_idx, end_idx, by = 4)
graph.plotter.3d.single(aux_graph, FF_true[, idx], time_seq[idx])

Figure 1: Time evolution of the right-hand side function \(f\).

abs_error <- abs(U_true[, idx] - U_approx[, idx])
graph.plotter.3d.single(aux_graph, abs_error, time_seq[idx])

Figure 2: Time evolution of the absolute difference between the exact and approximate solution.

idx2 <- seq(start_idx, end_idx, by = 10)
graph.plotter.3d.comparer(aux_graph, U_true[,idx2], U_approx[,idx2], time_seq[idx2])

Figure 3: Comparison of the exact and approximate solution at selected time points.

3 References

grateful::cite_packages(output = "paragraph", out.dir = ".")

We used R version 4.5.0 (R Core Team 2025) and the following R packages: gsignal v. 0.3.7 (Van Boxtel, G.J.M., et al. 2021), here v. 1.0.1 (Müller 2020), htmltools v. 0.5.8.1 (Cheng et al. 2024), knitr v. 1.50 (Xie 2014, 2015, 2025), Matrix v. 1.7.3 (Bates, Maechler, and Jagan 2025), MetricGraph v. 1.5.0.9000 (Bolin, Simas, and Wallin 2023a, 2023b, 2024, 2025; Bolin et al. 2024), patchwork v. 1.3.1 (Pedersen 2025), plotly v. 4.10.4 (Sievert 2020), RColorBrewer v. 1.1.3 (Neuwirth 2022), renv v. 1.0.7 (Ushey and Wickham 2024), reshape2 v. 1.4.4 (Wickham 2007), rmarkdown v. 2.29 (Xie, Allaire, and Grolemund 2018; Xie, Dervieux, and Riederer 2020; Allaire et al. 2024), rSPDE v. 2.5.1.9000 (Bolin and Kirchner 2020; Bolin and Simas 2023; Bolin, Simas, and Xiong 2024), scales v. 1.4.0 (Wickham, Pedersen, and Seidel 2025), slackr v. 3.4.0 (Kaye et al. 2025), tidyverse v. 2.0.0 (Wickham et al. 2019), viridisLite v. 0.4.2 (Garnier et al. 2023), xaringanExtra v. 0.8.0 (Aden-Buie and Warkentin 2024).

Aden-Buie, Garrick, and Matthew T. Warkentin. 2024. xaringanExtra: Extras and Extensions for xaringan Slides. https://doi.org/10.32614/CRAN.package.xaringanExtra.
Allaire, JJ, Yihui Xie, Christophe Dervieux, Jonathan McPherson, Javier Luraschi, Kevin Ushey, Aron Atkins, et al. 2024. rmarkdown: Dynamic Documents for r. https://github.com/rstudio/rmarkdown.
Bates, Douglas, Martin Maechler, and Mikael Jagan. 2025. Matrix: Sparse and Dense Matrix Classes and Methods. https://doi.org/10.32614/CRAN.package.Matrix.
Bolin, David, and Kristin Kirchner. 2020. “The Rational SPDE Approach for Gaussian Random Fields with General Smoothness.” Journal of Computational and Graphical Statistics 29 (2): 274–85. https://doi.org/10.1080/10618600.2019.1665537.
Bolin, David, Mihály Kovács, Vivek Kumar, and Alexandre B. Simas. 2024. “Regularity and Numerical Approximation of Fractional Elliptic Differential Equations on Compact Metric Graphs.” Mathematics of Computation 93 (349): 2439–72. https://doi.org/10.1090/mcom/3929.
Bolin, David, and Alexandre B. Simas. 2023. rSPDE: Rational Approximations of Fractional Stochastic Partial Differential Equations. https://CRAN.R-project.org/package=rSPDE.
Bolin, David, Alexandre B. Simas, and Jonas Wallin. 2023a. MetricGraph: Random Fields on Metric Graphs. https://CRAN.R-project.org/package=MetricGraph.
———. 2023b. “Statistical Inference for Gaussian Whittle-Matérn Fields on Metric Graphs.” arXiv Preprint arXiv:2304.10372. https://doi.org/10.48550/arXiv.2304.10372.
———. 2024. “Gaussian Whittle-Matérn Fields on Metric Graphs.” Bernoulli 30 (2): 1611–39. https://doi.org/10.3150/23-BEJ1647.
———. 2025. “Markov Properties of Gaussian Random Fields on Compact Metric Graphs.” Bernoulli. https://doi.org/10.48550/arXiv.2304.03190.
Bolin, David, Alexandre B. Simas, and Zhen Xiong. 2024. “Covariance-Based Rational Approximations of Fractional SPDEs for Computationally Efficient Bayesian Inference.” Journal of Computational and Graphical Statistics 33 (1): 64–74. https://doi.org/10.1080/10618600.2023.2231051.
Cheng, Joe, Carson Sievert, Barret Schloerke, Winston Chang, Yihui Xie, and Jeff Allen. 2024. htmltools: Tools for HTML. https://doi.org/10.32614/CRAN.package.htmltools.
Garnier, Simon, Ross, Noam, Rudis, Robert, Camargo, et al. 2023. viridis(Lite) - Colorblind-Friendly Color Maps for r. https://doi.org/10.5281/zenodo.4678327.
Kaye, Matt, Bob Rudis, Andrie de Vries, and Jonathan Sidi. 2025. slackr: Send Messages, Images, r Objects and Files to Slack Channels/Users. https://github.com/mrkaye97/slackr.
Müller, Kirill. 2020. here: A Simpler Way to Find Your Files. https://doi.org/10.32614/CRAN.package.here.
Neuwirth, Erich. 2022. RColorBrewer: ColorBrewer Palettes. https://doi.org/10.32614/CRAN.package.RColorBrewer.
Pedersen, Thomas Lin. 2025. patchwork: The Composer of Plots. https://doi.org/10.32614/CRAN.package.patchwork.
R Core Team. 2025. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
Sievert, Carson. 2020. Interactive Web-Based Data Visualization with r, Plotly, and Shiny. Chapman; Hall/CRC. https://plotly-r.com.
Ushey, Kevin, and Hadley Wickham. 2024. renv: Project Environments. https://doi.org/10.32614/CRAN.package.renv.
Van Boxtel, G.J.M., et al. 2021. gsignal: Signal Processing. https://github.com/gjmvanboxtel/gsignal.
Wickham, Hadley. 2007. “Reshaping Data with the reshape Package.” Journal of Statistical Software 21 (12): 1–20. http://www.jstatsoft.org/v21/i12/.
Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D’Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019. “Welcome to the tidyverse.” Journal of Open Source Software 4 (43): 1686. https://doi.org/10.21105/joss.01686.
Wickham, Hadley, Thomas Lin Pedersen, and Dana Seidel. 2025. scales: Scale Functions for Visualization. https://doi.org/10.32614/CRAN.package.scales.
Xie, Yihui. 2014. knitr: A Comprehensive Tool for Reproducible Research in R.” In Implementing Reproducible Computational Research, edited by Victoria Stodden, Friedrich Leisch, and Roger D. Peng. Chapman; Hall/CRC.
———. 2015. Dynamic Documents with R and Knitr. 2nd ed. Boca Raton, Florida: Chapman; Hall/CRC. https://yihui.org/knitr/.
———. 2025. knitr: A General-Purpose Package for Dynamic Report Generation in R. https://yihui.org/knitr/.
Xie, Yihui, J. J. Allaire, and Garrett Grolemund. 2018. R Markdown: The Definitive Guide. Boca Raton, Florida: Chapman; Hall/CRC. https://bookdown.org/yihui/rmarkdown.
Xie, Yihui, Christophe Dervieux, and Emily Riederer. 2020. R Markdown Cookbook. Boca Raton, Florida: Chapman; Hall/CRC. https://bookdown.org/yihui/rmarkdown-cookbook.
LS0tCnRpdGxlOiAiRXhwZXJpbWVudCIKZGF0ZTogIkxhc3QgbW9kaWZpZWQ6IGByIGZvcm1hdChTeXMudGltZSgpLCAnJWQtJW0tJVkuJylgIgpvdXRwdXQ6CiAgaHRtbF9kb2N1bWVudDoKICAgIG1hdGhqYXg6ICJodHRwczovL2Nkbi5qc2RlbGl2ci5uZXQvbnBtL21hdGhqYXhAMy9lczUvdGV4LW1tbC1jaHRtbC5qcyIKICAgIGhpZ2hsaWdodDogcHlnbWVudHMKICAgIHRoZW1lOiBmbGF0bHkKICAgIGNvZGVfZm9sZGluZzogaGlkZSAjIGNsYXNzLnNvdXJjZSA9ICJmb2xkLWhpZGUiIHRvIGhpZGUgY29kZSBhbmQgYWRkIGEgYnV0dG9uIHRvIHNob3cgaXQKICAgIGRmX3ByaW50OiBwYWdlZAogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6CiAgICAgIGNvbGxhcHNlZDogdHJ1ZQogICAgICBzbW9vdGhfc2Nyb2xsOiB0cnVlCiAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUKICAgIGZpZ19jYXB0aW9uOiB0cnVlCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlCiAgICBjc3M6IHZpc3VhbC5jc3MKYWx3YXlzX2FsbG93X2h0bWw6IHRydWUKYmlibGlvZ3JhcGh5OiAKICAtIHJlZmVyZW5jZXMuYmliCiAgLSBncmF0ZWZ1bC1yZWZzLmJpYgpoZWFkZXItaW5jbHVkZXM6CiAgLSBcbmV3Y29tbWFuZHtcYXJ9e1xtYXRoYmJ7Un19CiAgLSBcbmV3Y29tbWFuZHtcbGxhdn1bMV17XGxlZnRceyMxXHJpZ2h0XH19CiAgLSBcbmV3Y29tbWFuZHtccGFyZX1bMV17XGxlZnQoIzFccmlnaHQpfQogIC0gXG5ld2NvbW1hbmR7XE5jYWx9e1xtYXRoY2Fse059fQogIC0gXG5ld2NvbW1hbmR7XFZjYWx9e1xtYXRoY2Fse1Z9fQogIC0gXG5ld2NvbW1hbmR7XEVjYWx9e1xtYXRoY2Fse0V9fQogIC0gXG5ld2NvbW1hbmR7XFdjYWx9e1xtYXRoY2Fse1d9fQotLS0KCkdvIGJhY2sgdG8gdGhlIFtDb250ZW50c10oYWJvdXQuaHRtbCkgcGFnZS4KCjxkaXYgc3R5bGU9ImNvbG9yOiAjMmMzZTUwOyB0ZXh0LWFsaWduOiByaWdodDsiPgoqKioqKioqKiAgCjxzdHJvbmc+UHJlc3MgU2hvdyB0byByZXZlYWwgdGhlIGNvZGUgY2h1bmtzLjwvc3Ryb25nPiAgCgoqKioqKioqKgo8L2Rpdj4KCgpMZXQgdXMgc2V0IHNvbWUgZ2xvYmFsIG9wdGlvbnMgZm9yIGFsbCBjb2RlIGNodW5rcyBpbiB0aGlzIGRvY3VtZW50LgoKCmBgYHtyfQojIENyZWF0ZSBhIGNsaXBib2FyZCBidXR0b24Kc291cmNlKGhlcmU6OmhlcmUoImNsaXBib2FyZC5SIikpOyBjbGlwYm9hcmQKIyBTZXQgc2VlZCBmb3IgcmVwcm9kdWNpYmlsaXR5CnNldC5zZWVkKDE5ODIpIAojIFNldCBnbG9iYWwgb3B0aW9ucyBmb3IgYWxsIGNvZGUgY2h1bmtzCmtuaXRyOjpvcHRzX2NodW5rJHNldCgKICAjIERpc2FibGUgbWVzc2FnZXMgcHJpbnRlZCBieSBSIGNvZGUgY2h1bmtzCiAgbWVzc2FnZSA9IEZBTFNFLCAgICAKICAjIERpc2FibGUgd2FybmluZ3MgcHJpbnRlZCBieSBSIGNvZGUgY2h1bmtzCiAgd2FybmluZyA9IEZBTFNFLCAgICAKICAjIFNob3cgUiBjb2RlIHdpdGhpbiBjb2RlIGNodW5rcyBpbiBvdXRwdXQKICBlY2hvID0gVFJVRSwgICAgICAgIAogICMgSW5jbHVkZSBib3RoIFIgY29kZSBhbmQgaXRzIHJlc3VsdHMgaW4gb3V0cHV0CiAgaW5jbHVkZSA9IFRSVUUsICAgICAKICAjIEV2YWx1YXRlIFIgY29kZSBjaHVua3MKICBldmFsID0gVFJVRSwgICAgICAgCiAgIyBFbmFibGUgY2FjaGluZyBvZiBSIGNvZGUgY2h1bmtzIGZvciBmYXN0ZXIgcmVuZGVyaW5nCiAgY2FjaGUgPSBGQUxTRSwgICAgICAKICAjIEFsaWduIGZpZ3VyZXMgaW4gdGhlIGNlbnRlciBvZiB0aGUgb3V0cHV0CiAgZmlnLmFsaWduID0gImNlbnRlciIsCiAgIyBFbmFibGUgcmV0aW5hIGRpc3BsYXkgZm9yIGhpZ2gtcmVzb2x1dGlvbiBmaWd1cmVzCiAgcmV0aW5hID0gMiwKICAjIFNob3cgZXJyb3JzIGluIHRoZSBvdXRwdXQgaW5zdGVhZCBvZiBzdG9wcGluZyByZW5kZXJpbmcKICBlcnJvciA9IFRSVUUsCiAgIyBEbyBub3QgY29sbGFwc2UgY29kZSBhbmQgb3V0cHV0IGludG8gYSBzaW5nbGUgYmxvY2sKICBjb2xsYXBzZSA9IEZBTFNFCikKIyBTdGFydCB0aGUgZmlndXJlIGNvdW50ZXIKZmlnX2NvdW50IDwtIDAKIyBEZWZpbmUgdGhlIGNhcHRpb25lciBmdW5jdGlvbgpjYXB0aW9uZXIgPC0gZnVuY3Rpb24oY2FwdGlvbikgewogIGZpZ19jb3VudCA8PC0gZmlnX2NvdW50ICsgMQogIHBhc3RlMCgiRmlndXJlICIsIGZpZ19jb3VudCwgIjogIiwgY2FwdGlvbikKfQpgYGAKCgoKYGBge3J9CiMgcmVtb3Rlczo6aW5zdGFsbF9naXRodWIoImRhdmlkYm9saW4vcnNwZGUiLCByZWYgPSAiZGV2ZWwiKQojIHJlbW90ZXM6Omluc3RhbGxfZ2l0aHViKCJkYXZpZGJvbGluL21ldHJpY2dyYXBoIiwgcmVmID0gImRldmVsIikKbGlicmFyeShyU1BERSkKbGlicmFyeShNZXRyaWNHcmFwaCkKbGlicmFyeShncmF0ZWZ1bCkKCmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeShyZXNoYXBlMikKbGlicmFyeShwbG90bHkpCmBgYAoKCgpgYGB7cn0KY2FwdHVyZS5vdXRwdXQoCiAga25pdHI6OnB1cmwoaGVyZTo6aGVyZSgiZnVuY3Rpb25hbGl0eS5SbWQiKSwgb3V0cHV0ID0gaGVyZTo6aGVyZSgiZnVuY3Rpb25hbGl0eS5SIikpLAogIGZpbGUgPSBoZXJlOjpoZXJlKCJwdXJsX2xvZy50eHQiKQopCnNvdXJjZShoZXJlOjpoZXJlKCJmdW5jdGlvbmFsaXR5LlIiKSkKYGBgCgoKIyMgVGhlIGVxdWF0aW9uCgpXZSBhbmFseXplIGFuZCBudW1lcmljYWxseSBhcHByb3hpbWF0ZSBzb2x1dGlvbnMgdG8gZnJhY3Rpb25hbCBkaWZmdXNpb24gZXF1YXRpb25zIG9uIG1ldHJpYyBncmFwaHMgb2YgdGhlIGZvcm0KXGJlZ2lue2VxdWF0aW9ufQpcbGFiZWx7ZXE6bWFpbmVxfQpcdGFnezF9ClxsZWZ0XHsKXGJlZ2lue2FsaWduZWR9CiAgICBccGFydGlhbF90IHUocyx0KSArIChca2FwcGFeMiAtIFxEZWx0YV9cR2FtbWEpXntcYWxwaGEvMn0gdShzLHQpICY9IGYocyx0KSwgJiYgXHF1YWQgKHMsdCkgXGluIFxHYW1tYSBcdGltZXMgKDAsIFQpLCBcXAogICAgdShzLDApICY9IHVfMChzKSwgJiYgXHF1YWQgcyBcaW4gXEdhbW1hLApcZW5ke2FsaWduZWR9ClxyaWdodC4KXGVuZHtlcXVhdGlvbn0Kd2l0aCAkdShcY2RvdCx0KSQgc2F0aXNmeWluZyB0aGUgS2lyY2hob2ZmIHZlcnRleCBjb25kaXRpb25zClxiZWdpbntlcXVhdGlvbn0KXGxhYmVse2VxOktjb25kfQpcdGFnezJ9CiAgIFxtYXRoY2Fse0t9ID0gIFxsZWZ0XHtccGhpXGluIEMoXEdhbW1hKVw7XG1pZGRsZXxcOyBcZm9yYWxsIHZcaW4gXG1hdGhjYWx7Vn06XDsgXHRleHRzdHlsZVxzdW1fe2VcaW5cbWF0aGNhbHtFfV92fVxwYXJ0aWFsX2UgXHBoaSh2KT0wIFxyaWdodFx9LgpcZW5ke2VxdWF0aW9ufQpIZXJlICRcR2FtbWEgPSAoXG1hdGhjYWx7Vn0sXG1hdGhjYWx7RX0pJCBpcyBhIG1ldHJpYyBncmFwaCwgJFxrYXBwYT4wJCwgJFxhbHBoYVxpbigwLDJdJCBkZXRlcm1pbmVzIHRoZSBzbW9vdGhuZXNzIG9mICR1KFxjZG90LHQpJCwgJFxEZWx0YV97XEdhbW1hfSQgaXMgdGhlIHNvLWNhbGxlZCBLaXJjaGhvZmYtLUxhcGxhY2lhbiwgYW5kICRmOlxHYW1tYVx0aW1lcyAoMCxUKVx0b1xtYXRoYmJ7Un0kIGFuZCAkdV8wOiBcR2FtbWEgXHRvIFxtYXRoYmJ7Un0kIGFyZSBmaXhlZCBmdW5jdGlvbnMsIGNhbGxlZCByaWdodC1oYW5kIHNpZGUgYW5kIGluaXRpYWwgY29uZGl0aW9uLCByZXNwZWN0aXZlbHkuCgojIyBFaWdlbmZ1bmN0aW9uLWJhc2VkIGNvbnN0cnVjdGlvbiBvZiBhbiBleGFjdCBzb2x1dGlvbiB7I2VpZ2Vuc29sY29uc3R9CgpUaGUgZXhhY3Qgc29sdXRpb24gdG8gXGVxcmVme2VxOm1haW5lcX0gY2FuIGJlIGV4cHJlc3NlZCBhcwpcYmVnaW57ZXF1YXRpb259ClxsYWJlbHtlcTpzb2xfcmVwcmVudGF0aW9ufQpcdGFnezN9CiAgICAgICAgdShzLHQpID0gXGRpc3BsYXlzdHlsZVxzdW1fe2pcaW5cbWF0aGJie059fWVeey1cbGFtYmRhXntcYWxwaGEvMn1fanR9XGxlZnQodV8wLCBlX2pccmlnaHQpX3tMXzIoXEdhbW1hKX1lX2oocykgKyBcaW50XzBedCBcZGlzcGxheXN0eWxlXHN1bV97alxpblxtYXRoYmJ7Tn19ZV57LVxsYW1iZGFee1xhbHBoYS8yfV9qKHQtcil9XGxlZnQoZihcY2RvdCwgciksIGVfalxyaWdodClfe0xfMihcR2FtbWEpfWVfaihzKWRyLgpcZW5ke2VxdWF0aW9ufQoKVG8gY29uc3RydWN0IGFuIGV4YWN0IHNvbHV0aW9uLCB3ZSBleHBhbmQgYm90aCB0aGUgaW5pdGlhbCBjb25kaXRpb24gYW5kIHRoZSByaWdodC1oYW5kIHNpZGUgaW4gdGVybXMgb2YgdGhlIGVpZ2VuZnVuY3Rpb25zLiBXZSBjaG9vc2UgY29lZmZpY2llbnRzICRce3hfalx9X3tqPTF9XntcaW5mdHl9JCBhbmQgICRce3lfalx9X3tqPTF9XntcaW5mdHl9JCBhbmQgYSBzY2FsYXIgZnVuY3Rpb24gJGcodCkkIGFuZCBzZXQKXGJlZ2lue2FsaWdufQpcdGFnezR9CiAgICB1XzAocykgPSBcc3VtX3tqPTF9XntcaW5mdHl9IHhfaiBlX2oocylccXVhZCBcdGV4dHsgYW5kIH1ccXVhZAogICAgZihzLHQpID0gZyh0KSBcc3VtX3tqPTF9XntcaW5mdHl9IHlfaiBlX2oocykuClxlbmR7YWxpZ259CiBTdWJzdGl0dXRpbmcgdGhlc2UgZXhwcmVzc2lvbnMgaW50byB0aGUgc29sdXRpb24gZm9ybXVsYSBcZXFyZWZ7ZXE6c29sX3JlcHJlbnRhdGlvbn0sIHdlIG9idGFpbgpcYmVnaW57YWxpZ259ClxsYWJlbHtzb2xsbGx9Clx0YWd7NX0KICAgIHUocyx0KSA9IFxzdW1fe2o9MX1ee1xpbmZ0eX0oeF9qK3lfaiBHX2oodCkpZV57LVxsYW1iZGFee1xhbHBoYS8yfV9qdH1lX2oocyksXHF1YWQgR19qKHQpPSBcaW50XzBedCBlXntcbGFtYmRhXntcYWxwaGEvMn1fanJ9ZyhyKWRyLApcZW5ke2FsaWdufQp3aGVyZSB0aGUgaW50ZWdyYWwgY2FuIGJlIGV2YWx1YXRlZCBhbmFseXRpY2FsbHkgZm9yIHNvbWUgY2hvaWNlcyBvZiAkZyh0KSQsIGFzIHNob3duIGluIHRoZSAgW0Z1bmN0aW9uYWxpdHldKGZ1bmN0aW9uYWxpdHkuaHRtbCNleGFjdF9zb2x1dGlvbikgcGFnZS4gVGhlIGZvbGxvd2luZyBsaXN0IHNob3dzIGhvdyB0aGUgYWJvdmUgZXhwcmVzc2lvbnMgYXJlIGltcGxlbWVudGVkIGluICRcdGV4dHR0e1J9JC4KXGJlZ2lue2FsaWduZWR9Clx0ZXh0e2V4cHJlc3Npb259IFxpZmYmXHF1YWQgXHRleHR7SW4gfSBcdGV4dHR0e1J9XFwKXHt4X2pcfV97aj0xfV57XGluZnR5fSBcaWZmJlxxdWFkICBcdGV4dHR0e2NvZWZmX1VfMH1cXApce3lfalx9X3tqPTF9XntcaW5mdHl9IFxpZmYmXHF1YWQgIFx0ZXh0dHR7Y29lZmZfRkZ9XFwKW2VfMSBlXzIgXGRvdHMgZV97Tl9mfV0gXGlmZiZccXVhZCAgXHRleHR0dHtFSUdFTkZVTn1cXAp1XzAocykgXGlmZiZccXVhZCAgXHRleHR0dHtVXzAgPC0gRUlHRU5GVU4gJSolIGNvZWZmX1VfMH1cXApmKHMsdCkgXGlmZiZccXVhZCAgXHRleHR0dHtGRl90cnVlIDwtIEVJR0VORlVOICUqJX1cXAomXHF1YWRcdGV4dHR0eyBvdXRlcigxOmxlbmd0aChjb2VmZl9GRiksfVxcCiZccXF1YWRccXF1YWRcdGV4dHR0eyAxOmxlbmd0aCh0aW1lX3NlcSksfVxcCiZccXF1YWRccXF1YWRcdGV4dHR0eyBmdW5jdGlvbihpLCBqKSBjb2VmZl9GRltpXSAqIGdfc2luKHIgPSB0aW1lX3NlcVtqXSwgQSA9IEFBQSwgb21lZ2EgPSBPTUVHQSkpfVxcCnUocyx0KSBcaWZmJlxxdWFkICBcdGV4dHR0e1VfdHJ1ZSA8LSBFSUdFTkZVTiAlKiV9XFwKJlxxdWFkXHRleHR0dHsgb3V0ZXIoMTpsZW5ndGgoY29lZmZfVV8wKSx9XFwKJlxxcXVhZFxxcXVhZFx0ZXh0dHR7IDE6bGVuZ3RoKHRpbWVfc2VxKSx9XFwKJlxxcXVhZFxxcXVhZFx0ZXh0dHR7IGZ1bmN0aW9uKGksIGopIChjb2VmZl9VXzBbaV0gKyBjb2VmZl9GRltpXSAqIEdfc2luKHQgPSB0aW1lX3NlcVtqXSwgQSA9IEFBQSwgbGFtYmRhX2pfYWxwaGFfaGFsZiA9IEVJR0VOVkFMX0FMUEhBW2ldLCBvbWVnYSA9IE9NRUdBKSkgKn1cXAomXHFxdWFkXHFxdWFkXHFxdWFkXHFxdWFkXHFxdWFkXHFxdWFkXHF1YWRcdGV4dHR0e2V4cCgtRUlHRU5WQUxfQUxQSEFbaV0gKiB0aW1lX3NlcVtqXSkpfQpcZW5ke2FsaWduZWR9CgpMZXQgdXMgY2hlY2sgdGhhdCBcZXFyZWZ7c29sbGxsfSBpcyBhIHNvbHV0aW9uIG9mIFxlcXJlZntlcTptYWluZXF9LiBBdCAkdD0wJCwgd2UgZ2V0ClxiZWdpbnthbGlnbip9CiAgICB1KHMsMCkgPSBcc3VtX3tqPTF9XntcaW5mdHl9KHhfait5X2ogR19qKDApKWVeey1cbGFtYmRhXntcYWxwaGEvMn1fajB9ZV9qKHMpID0gXHN1bV97aj0xfV57XGluZnR5fXhfamVfaihzKSA9dV8wKHMpLApcZW5ke2FsaWduKn0Kd2hpbGUgZm9yICQocyx0KSBcaW4gXEdhbW1hIFx0aW1lcyAoMCwgVCkkLCB3ZSBvYnRhaW4KXGJlZ2lue2FsaWduKn0KICAgIFxwYXJ0aWFsX3QgdShzLHQpID0gXHN1bV97aj0xfV57XGluZnR5fXlfaiBHJ19qKHQpZV57LVxsYW1iZGFee1xhbHBoYS8yfV9qdH1lX2oocykgLSBcc3VtX3tqPTF9XntcaW5mdHl9KHhfait5X2ogR19qKHQpKWVeey1cbGFtYmRhXntcYWxwaGEvMn1fanR9XGxhbWJkYV57XGFscGhhLzJ9X2plX2oocykKXGVuZHthbGlnbip9CmFuZApcYmVnaW57YWxpZ24qfQogICAgKFxrYXBwYV4yIC0gXERlbHRhX1xHYW1tYSlee1xhbHBoYS8yfSB1KHMsdCkgJj0gXHN1bV97aj0xfV57XGluZnR5fSh4X2oreV9qIEdfaih0KSllXnstXGxhbWJkYV57XGFscGhhLzJ9X2p0fShca2FwcGFeMiAtIFxEZWx0YV9cR2FtbWEpXntcYWxwaGEvMn1lX2oocylcXAogICAgJj0gXHN1bV97aj0xfV57XGluZnR5fSh4X2oreV9qIEdfaih0KSllXnstXGxhbWJkYV57XGFscGhhLzJ9X2p0fVxsYW1iZGFee1xhbHBoYS8yfV9qZV9qKHMpLgpcZW5ke2FsaWduKn0KQWRkaW5nIHRoZXNlIHR3byBhbmQgdXNpbmcgdGhlIGZhY3QgdGhhdCAkRydfaih0KSA9IGVee1xsYW1iZGFee1xhbHBoYS8yfV9qdH1nKHQpJCB5aWVsZApcYmVnaW57YWxpZ24qfQogICAgXHBhcnRpYWxfdCB1KHMsdCkgKyAoXGthcHBhXjIgLSBcRGVsdGFfXEdhbW1hKV57XGFscGhhLzJ9IHUocyx0KSY9IGcodClcc3VtX3tqPTF9XntcaW5mdHl9eV9qZV57XGxhbWJkYV57XGFscGhhLzJ9X2p0fSBlXnstXGxhbWJkYV57XGFscGhhLzJ9X2p0fWVfaihzKSA9IGYocyx0KS4KXGVuZHthbGlnbip9ClRoaXMgc2hvd3MgdGhhdCBcZXFyZWZ7c29sbGxsfSBpcyBpbmRlZWQgYSBzb2x1dGlvbiBvZiBcZXFyZWZ7ZXE6bWFpbmVxfS4KCkZyb20gdGhlIFtGdW5jdGlvbmFsaXR5XShmdW5jdGlvbmFsaXR5Lmh0bWwjbnVtX3NjaGVtZSkgcGFnZSwgd2Uga25vdyB0aGF0IHRoZSBzb2x1dGlvbiB0byBcZXFyZWZ7ZXE6bWFpbmVxfSBjYW4gYmUgYXBwcm94aW1hdGVkIGJ5IGEgbnVtZXJpY2FsIHNjaGVtZSBvZiB0aGUgZm9ybQpcYmVnaW57ZXF1YXRpb259ClxsYWJlbHtlcTpmaW5hbF9zY2hlbWUyfQpcdGFnezZ9Clxib2xkc3ltYm9se1V9XntrKzF9ID0gXGJvbGRzeW1ib2x7Q31eey0xfVxsZWZ0KFxzdW1fe2s9MX1ee20rMX0gYV9rXGxlZnQoIFxkZnJhY3tcYm9sZHN5bWJvbHtMfVxib2xkc3ltYm9se0N9XnstMX19e1xrYXBwYV4yfS1wX2tcYm9sZHN5bWJvbHtJfVxyaWdodCleey0xfSArIHJcYm9sZHN5bWJvbHtJfVxyaWdodCkgKFxib2xkc3ltYm9se0N9XGJvbGRzeW1ib2x7VX1eaytcdGF1IFxib2xkc3ltYm9se0Z9XntrKzF9KQpcZW5ke2VxdWF0aW9ufQpMZXQgJFxib2xkc3ltYm9se0Z9JCBiZSB0aGUgbWF0cml4IHdpdGggY29sdW1ucyAkXGJvbGRzeW1ib2x7Rn1eayQuIFRoaXMgbWF0cml4IGhhcyBlbnRyaWVzICRcYm9sZHN5bWJvbHtGfV97aWt9JCBnaXZlbiBieQpcYmVnaW57YWxpZ259ClxsYWJlbHtlcTppbm5lcnByb2R9Clx0YWd7N30KICAgIChmXntrfSxccHNpXmlfaClfe0xfMihcR2FtbWEpfSA9IChmKFxjZG90LHRfayksXHBzaV5pX2gpX3tMXzIoXEdhbW1hKX0gPSBcc3VtX3tqPTF9XntOX2Z9IHlfaiBnKHRfaykgKGVfaixccHNpXmlfaClfe0xfMihcR2FtbWEpfS4KXGVuZHthbGlnbn0KVG8gYXBwcm94aW1hdGUgdGhlIGlubmVyIHByb2R1Y3RzICQoZV9qLFxwc2leaV9oKV97TF8yKFxHYW1tYSl9JCwgd2UgdXNlIHRoZSBxdWFkcmF0dXJlIGZvcm11bGEgJFxib2xkc3ltYm9se1xwc2l9X2leXHRvcFxib2xkc3ltYm9se0N9XntcdGV4dHtva319XGJvbGRzeW1ib2x7ZX1faiQsIHdoZXJlICRcYm9sZHN5bWJvbHtlfV9qPVtlX2ooc18xKVxkb3RzIGVfaihzX3tOX3toX3tcdGV4dHtva319fX0pXV5cdG9wJCBhbmQgJFxib2xkc3ltYm9se1xwc2l9X2k9W1xwc2leaV9oKHNfMSlcZG90cyBccHNpXmlfaChzX3tOX3toX3tcdGV4dHtva319fX0pXV5cdG9wJCAgYXJlIHZlY3RvcnMgb2YgZnVuY3Rpb24gZXZhbHVhdGlvbnMgb24gYSBmaW5lIHNwYXRpYWwgbWVzaCB3aXRoIG1lc2ggc2l6ZSAkaF97XHRleHR7b2t9fSQgYW5kIG5vZGVzICRce3NfXGVsbFx9X3tcZWxsPTF9XntOX3toX3tcdGV4dHtva319fX0kLiBNYXRyaXggJFxib2xkc3ltYm9se0N9XntcdGV4dHtva319JCBjb250YWlucyB0aGUgY29ycmVzcG9uZGluZyBxdWFkcmF0dXJlIHdlaWdodHMsIHdpdGggZW50cmllcyAkXGJvbGRzeW1ib2x7Q31ee1x0ZXh0e29rfX1fe25tfSA9IChccHNpX3toX1x0ZXh0e29rfX1ebixccHNpX3toX1x0ZXh0e29rfX1ebSlfe0xfMihcR2FtbWEpfSQgZm9yICRuLG0gPSAxLFxkb3RzLCBOX3toX1x0ZXh0e29rfX0kLiBXZSBlbXBoYXNpemUgdGhhdCB0d28gc3BhdGlhbCBtZXNoZXMgYXJlIGludm9sdmVkIGluIHRoaXMgY29uc3RydWN0aW9uLiBUaGUgYmFzaXMgZnVuY3Rpb25zICRce1xwc2leaV9oXH1fe2k9MX1ee05faH0kIGFyZSBkZWZpbmVkIG9uIGEgY29hcnNlIHNwYXRpYWwgbWVzaCB3aXRoIG1lc2ggc2l6ZSAkaCQsIHdoaWxlIHRoZSBxdWFkcmF0dXJlIGlzIGNhcnJpZWQgb3V0IG92ZXIgYSBmaW5lciBtZXNoIHdpdGggYXNzb2NpYXRlZCBiYXNpcyBmdW5jdGlvbnMgJFx7XHBzaV5cZWxsX3toX1x0ZXh0e29rfX1cfV97XGVsbD0xfV57Tl97aF9cdGV4dHtva319fSQgYW5kIG1lc2ggc2l6ZSAkaF9cdGV4dHtva30kLiBJZiAkXGJvbGRzeW1ib2x7Tn0kIGRlbm90ZXMgdGhlIG1hdHJpeCB3aXRoIGVudHJpZXMgJFxib2xkc3ltYm9se059X3tqa30gPSB5X2ogZyh0X2spJCwgdGhlbiAkXGJvbGRzeW1ib2x7Rn0kIGNhbiBiZSBhcHByb3hpbWF0ZWQgYXMgJFtcYm9sZHN5bWJvbHtccHNpfV8xXGRvdHMgXGJvbGRzeW1ib2x7XHBzaX1fe05faH1dXlx0b3AgXGJvbGRzeW1ib2x7Q31ee1x0ZXh0e29rfX0gW1xib2xkc3ltYm9se2V9XzFcZG90cyBcYm9sZHN5bWJvbHtlfV97Tl9mfV0gXGJvbGRzeW1ib2x7Tn0kLiBJbiAkXHRleHR0dHtSfSQsICAkXGJvbGRzeW1ib2x7Rn0kIGFuZCAkXGJvbGRzeW1ib2x7VX1ee2srMX0kIGFyZSBpbXBsZW1lbnRlZCBhcwpcYmVnaW57YWxpZ25lZH0KXHRleHR7ZXhwcmVzc2lvbn0gXGlmZiZccXVhZCBcdGV4dHtJbiB9IFx0ZXh0dHR7Un1cXApbXGJvbGRzeW1ib2x7XHBzaX1fMVxkb3RzIFxib2xkc3ltYm9se1xwc2l9X3tOX2h9XV5cdG9wIFxpZmYmXHF1YWQgXHRleHR0dHt0KGdyYXBoXCRmZW1fYmFzaXMob3ZlcmtpbGxfZ3JhcGhcJGdldF9tZXNoX2xvY2F0aW9ucygpKSl9XFwKXGJvbGRzeW1ib2x7Q31ee1x0ZXh0e29rfX0gXGlmZiZccXVhZCBcdGV4dHR0e292ZXJraWxsX2dyYXBoXCRtZXNoXCRDfVxcCltcYm9sZHN5bWJvbHtlfV8xXGRvdHMgXGJvbGRzeW1ib2x7ZX1fe05fZn1dIFxpZmYmXHF1YWQgXHRleHR0dHtvdmVya2lsbF9FSUdFTkZVTn1cXApcYm9sZHN5bWJvbHtOfSBcaWZmJlxxdWFkIFx0ZXh0dHR7b3V0ZXIoMTpsZW5ndGgoY29lZmZfRkYpLH1cXAomXHFxdWFkXHF1YWRcO1w7XHRleHR0dHsgMTpsZW5ndGgodGltZV9zZXEpLH1cXAomXHFxdWFkXHF1YWRcO1w7XHRleHR0dHsgZnVuY3Rpb24oaSwgaikgY29lZmZfRkZbaV0gKiBnX3NpbihyID0gdGltZV9zZXFbal0sIEEgPSBBQUEsIG9tZWdhID0gT01FR0EpKX1cXApcYm9sZHN5bWJvbHtGfVxpZmYmXHF1YWQgIFx0ZXh0dHR7RkZfaW5uZXJwcm9kIDwtIHQoZ3JhcGhcJGZlbV9iYXNpcyhvdmVya2lsbF9ncmFwaFwkZ2V0X21lc2hfbG9jYXRpb25zKCkpKSAlKiV9XFwKJlxxdWFkXHRleHR0dHtvdmVya2lsbF9ncmFwaFwkbWVzaFwkQyAlKiV9XFwKJlxxdWFkXHRleHR0dHtvdmVya2lsbF9FSUdFTkZVTiAlKiV9XFwKJlxxdWFkXHRleHR0dHtvdXRlcigxOmxlbmd0aChjb2VmZl9GRiksfVxcCiZccXF1YWRccXF1YWRcdGV4dHR0ezE6bGVuZ3RoKHRpbWVfc2VxKSx9XFwKJlxxcXVhZFxxcXVhZFx0ZXh0dHR7ZnVuY3Rpb24oaSwgaikgY29lZmZfRkZbaV0gKiBnX3NpbihyID0gdGltZV9zZXFbal0sIEEgPSBBQUEsIG9tZWdhID0gT01FR0EpKX1cXApcYm9sZHN5bWJvbHtVfV57aysxfVxpZmYmXHF1YWQgXHRleHR0dHtVX2FwcHJveFssIGsgKyAxXSA8LSBhcy5tYXRyaXgobXkuc29sdmVyLmZyYWMobXlfb3BfZnJhYywgbXlfb3BfZnJhY1wkQyAlKiUgVV9hcHByb3hbLCBrXSArIHRpbWVfc3RlcCAqIEZGX2lubmVycHJvZFssIGsgKyAxXSkpfQpcZW5ke2FsaWduZWR9CgpgYGB7cn0KVF9maW5hbCA8LSAyCnRpbWVfc3RlcCA8LSAwLjAwMSAKaCA8LSAwLjAwMSAKa2FwcGEgPC0gMTUKYWxwaGEgPC0gMC41IAptID0gMQpiZXRhIDwtIGFscGhhLzIKTl9maW5pdGUgPSA0ICMgY2hvb3NlIGV2ZW4KYWRqdXN0ZWRfTl9maW5pdGUgPC0gTl9maW5pdGUgKyBOX2Zpbml0ZS8yICsgMQojIENvZWZmaWNpZW50cyBmb3IgdV8wIGFuZCBmCmNvZWZmX1VfMCA8LSA1MCooMTphZGp1c3RlZF9OX2Zpbml0ZSleLTEKY29lZmZfVV8wWy01XSA8LSAwCmNvZWZmX0ZGIDwtIHJlcCgwLCBhZGp1c3RlZF9OX2Zpbml0ZSkKY29lZmZfRkZbN10gPC0gMTAKCgp0aW1lX3NlcSA8LSBzZXEoMCwgVF9maW5hbCwgYnkgPSB0aW1lX3N0ZXApCmdyYXBoIDwtIGdldHMuZ3JhcGgudGFkcG9sZShoID0gaCkKZ3JhcGgkY29tcHV0ZV9mZW0oKQpHIDwtIGdyYXBoJG1lc2gkRwpDIDwtIGdyYXBoJG1lc2gkQwpMIDwtIGthcHBhXjIqQyArIEcKSSA8LSBNYXRyaXg6OkRpYWdvbmFsKG5yb3coQykpCgplaWdlbl9wYXJhbXMgPC0gZ2V0cy5laWdlbi5wYXJhbXMoTl9maW5pdGUgPSBOX2Zpbml0ZSwga2FwcGEgPSBrYXBwYSwgYWxwaGEgPSBhbHBoYSwgZ3JhcGggPSBncmFwaCkKRUlHRU5WQUxfQUxQSEEgPC0gZWlnZW5fcGFyYW1zJEVJR0VOVkFMX0FMUEhBCkVJR0VORlVOIDwtIGVpZ2VuX3BhcmFtcyRFSUdFTkZVTgoKQUFBID0gMQpPTUVHQSA9IHBpCgpVXzAgPC0gRUlHRU5GVU4gJSolIGNvZWZmX1VfMAoKVV90cnVlIDwtIEVJR0VORlVOICUqJSAKICBvdXRlcigxOmxlbmd0aChjb2VmZl9VXzApLCAKICAgICAgICAxOmxlbmd0aCh0aW1lX3NlcSksIAogICAgICAgIGZ1bmN0aW9uKGksIGopIChjb2VmZl9VXzBbaV0gKyBjb2VmZl9GRltpXSAqIEdfc2luKHQgPSB0aW1lX3NlcVtqXSwgQSA9IEFBQSwgbGFtYmRhX2pfYWxwaGFfaGFsZiA9IEVJR0VOVkFMX0FMUEhBW2ldLCBvbWVnYSA9IE9NRUdBKSApICogZXhwKC1FSUdFTlZBTF9BTFBIQVtpXSAqIHRpbWVfc2VxW2pdKSkKCm92ZXJraWxsX2dyYXBoIDwtIGdldHMuZ3JhcGgudGFkcG9sZShoID0gMC4wMDAxKQpvdmVya2lsbF9ncmFwaCRjb21wdXRlX2ZlbSgpCm92ZXJraWxsX0VJR0VORlVOIDwtIGdldHMuZWlnZW4ucGFyYW1zKE5fZmluaXRlID0gTl9maW5pdGUsIGthcHBhID0ga2FwcGEsIGFscGhhID0gYWxwaGEsIGdyYXBoID0gb3ZlcmtpbGxfZ3JhcGgpJEVJR0VORlVOCgoKRkZfaW5uZXJwcm9kIDwtIHQoZ3JhcGgkZmVtX2Jhc2lzKG92ZXJraWxsX2dyYXBoJGdldF9tZXNoX2xvY2F0aW9ucygpKSkgJSolCiAgb3ZlcmtpbGxfZ3JhcGgkbWVzaCRDICUqJQogIG92ZXJraWxsX0VJR0VORlVOICUqJQogIG91dGVyKDE6bGVuZ3RoKGNvZWZmX0ZGKSwgCiAgICAgICAgMTpsZW5ndGgodGltZV9zZXEpLCAKICAgICAgICBmdW5jdGlvbihpLCBqKSBjb2VmZl9GRltpXSAqIGdfc2luKHIgPSB0aW1lX3NlcVtqXSwgQSA9IEFBQSwgb21lZ2EgPSBPTUVHQSkpCgpGRl90cnVlIDwtIEVJR0VORlVOICUqJSBvdXRlcigxOmxlbmd0aChjb2VmZl9GRiksIAogICAgICAgICAgICAgICAgICAgICAgICAgMTpsZW5ndGgodGltZV9zZXEpLCAKICAgICAgICAgICAgICAgICAgICAgICAgIGZ1bmN0aW9uKGksIGopIGNvZWZmX0ZGW2ldICogZ19zaW4ociA9IHRpbWVfc2VxW2pdLCBBID0gQUFBLCBvbWVnYSA9IE9NRUdBKSkKCiMgTnVtZXJpY2FsIHNvbHV0aW9uCm15X29wX2ZyYWMgPC0gbXkuZnJhY3Rpb25hbC5vcGVyYXRvcnMuZnJhYyhMLCBiZXRhLCBDLCBzY2FsZS5mYWN0b3IgPSBrYXBwYV4yLCBtID0gbSwgdGltZV9zdGVwKQoKVV9hcHByb3ggPC0gc29sdmVfZnJhY3Rpb25hbF9ldm9sdXRpb24obXlfb3BfZnJhYywgdGltZV9zdGVwLCB0aW1lX3NlcSwgdmFsX2F0XzAgPSBVXzAsIFJIU1QgPSBGRl9pbm5lcnByb2QpCgplcnJvciA8LSBzcXJ0KGFzLmRvdWJsZSh0KGdyYXBoJG1lc2gkd2VpZ2h0cykgJSolIChVX3RydWUgLSBVX2FwcHJveCleMiAlKiUgcmVwKHRpbWVfc3RlcCwgbmNvbChVX3RydWUpKSkpCmBgYAoKVGhlIGZvbGxvd2luZyBpcyB0aGUgZXJyb3IgcmVwb3J0ZWQgaW4gdGhlIHBhcGVyIGZvciB0aGUgY29uc2lkZXJlZCBleHBlcmltZW50LgoKYGBge3J9CnByaW50KHBhc3RlMCgiVG90YWwgZXJyb3IgPSAiLCBmb3JtYXRDKGVycm9yLCBmb3JtYXQgPSAiZiIsIGRpZ2l0cyA9IDkpKSkKYGBgCgpCZWNhdXNlIG9mIEdpdEh1YiBzdG9yYWdlIGxpbWl0cywgd2UgcHJvamVjdCB0aGUgc29sdXRpb24gKGFuZCBhbGwgb3RoZXIgdmlzdWFsaXphdGlvbnMpIHRvIGEgY29hcnNlciBtZXNoIGFzIGZvbGxvd3MuCgpgYGB7cn0KYXV4X2dyYXBoIDwtIGdldHMuZ3JhcGgudGFkcG9sZShoID0gMC4wMSkKQV9wcm9qIDwtIGdyYXBoJGZlbV9iYXNpcyhhdXhfZ3JhcGgkZ2V0X21lc2hfbG9jYXRpb25zKCkpCkZGX3RydWUgPC0gQV9wcm9qICUqJSBGRl90cnVlClVfdHJ1ZSA8LSBBX3Byb2ogJSolIFVfdHJ1ZQpVX2FwcHJveCA8LSBBX3Byb2ogJSolIFVfYXBwcm94CmBgYAoKCmBgYHtyLCBmaWcuaGVpZ2h0ID0gNiwgb3V0LndpZHRoID0gIjEwMCUiLCBmaWcuY2FwID0gY2FwdGlvbmVyKCJUaW1lIGV2b2x1dGlvbiBvZiB0aGUgcmlnaHQtaGFuZCBzaWRlIGZ1bmN0aW9uICRmJC4iKX0Kc3RhcnRfaWR4IDwtIHdoaWNoLm1pbihhYnModGltZV9zZXEgLSAwLjUpKQplbmRfaWR4IDwtIHdoaWNoLm1pbihhYnModGltZV9zZXEgLSAxLjUpKQppZHggPC0gc2VxKHN0YXJ0X2lkeCwgZW5kX2lkeCwgYnkgPSA0KQpncmFwaC5wbG90dGVyLjNkLnNpbmdsZShhdXhfZ3JhcGgsIEZGX3RydWVbLCBpZHhdLCB0aW1lX3NlcVtpZHhdKQpgYGAKCgpgYGB7ciwgZmlnLmhlaWdodCA9IDYsIG91dC53aWR0aCA9ICIxMDAlIiwgZmlnLmNhcCA9IGNhcHRpb25lcigiVGltZSBldm9sdXRpb24gb2YgdGhlIGFic29sdXRlIGRpZmZlcmVuY2UgYmV0d2VlbiB0aGUgZXhhY3QgYW5kIGFwcHJveGltYXRlIHNvbHV0aW9uLiIpfQphYnNfZXJyb3IgPC0gYWJzKFVfdHJ1ZVssIGlkeF0gLSBVX2FwcHJveFssIGlkeF0pCmdyYXBoLnBsb3R0ZXIuM2Quc2luZ2xlKGF1eF9ncmFwaCwgYWJzX2Vycm9yLCB0aW1lX3NlcVtpZHhdKQpgYGAKCgpgYGB7ciwgZmlnLmhlaWdodCA9IDYsIG91dC53aWR0aCA9ICIxMDAlIiwgZmlnLmNhcCA9IGNhcHRpb25lcigiQ29tcGFyaXNvbiBvZiB0aGUgZXhhY3QgYW5kIGFwcHJveGltYXRlIHNvbHV0aW9uIGF0IHNlbGVjdGVkIHRpbWUgcG9pbnRzLiIpfQppZHgyIDwtIHNlcShzdGFydF9pZHgsIGVuZF9pZHgsIGJ5ID0gMTApCmdyYXBoLnBsb3R0ZXIuM2QuY29tcGFyZXIoYXV4X2dyYXBoLCBVX3RydWVbLGlkeDJdLCBVX2FwcHJveFssaWR4Ml0sIHRpbWVfc2VxW2lkeDJdKQpgYGAKCgojIyBSZWZlcmVuY2VzCgpgYGB7cn0KZ3JhdGVmdWw6OmNpdGVfcGFja2FnZXMob3V0cHV0ID0gInBhcmFncmFwaCIsIG91dC5kaXIgPSAiLiIpCmBgYAoK