Go back to the About page.
This vignette compares different models for PeMS data. It uses pems_repl1_data.RData
,
which is a file with a graph and data created in pems_repl1.html.
Let us set some global options for all code chunks in this
document.
# Set seed for reproducibility
set.seed(1938)
# Set global options for all code chunks
knitr::opts_chunk$set(
# Disable messages printed by R code chunks
message = FALSE,
# Disable warnings printed by R code chunks
warning = FALSE,
# Show R code within code chunks in output
echo = TRUE,
# Include both R code and its results in output
include = TRUE,
# Evaluate R code chunks
eval = TRUE,
# Enable caching of R code chunks for faster rendering
cache = FALSE,
# Align figures in the center of the output
fig.align = "center",
# Enable retina display for high-resolution figures
retina = 2,
# Show errors in the output instead of stopping rendering
error = TRUE,
# Do not collapse code and output into a single block
collapse = FALSE
)
Below we load the necessary libraries.
library(INLA)
library(inlabru)
library(rSPDE)
library(MetricGraph)
library(dplyr)
library(plotly)
library(scales)
library(patchwork)
library(ggplot2)
library(cowplot)
library(ggpubr) #annotate_figure()
library(grid) #textGrob()
library(ggmap)
library(viridis)
library(OpenStreetMap)
library(tidyr)
library(sf)
library(here)
library(rmarkdown)
library(grateful) # Cite all loaded packages
Below we define the function captioner()
to generate
captions for the figures and the function
process_model_results()
to extract the summary of the
parameters of the model.
Press the Show button below to reveal the code.
# Start the figure counter
fig_count <- 0
# Define the captioner function
captioner <- function(caption) {
fig_count <<- fig_count + 1
paste0("Figure ", fig_count, ": ", caption)
}
process_model_results <- function(fit, model) {
fit_spde <- rspde.result(fit, "field", model, parameterization = "spde")
fit_matern <- rspde.result(fit, "field", model, parameterization = "matern")
df_for_plot_spde <- gg_df(fit_spde)
df_for_plot_matern <- gg_df(fit_matern)
param_spde <- summary(fit_spde)
param_matern <- summary(fit_matern)
param_fixed <- fit$summary.fixed[,1:6]
marginal.posterior.sigma_e = inla.tmarginal(
fun = function(x) exp(-x/2),
marginal = fit[["internal.marginals.hyperpar"]][["Log precision for the Gaussian observations"]])
quant.sigma_e <- capture.output({result_tmp <- inla.zmarginal(marginal.posterior.sigma_e)}, file = "/dev/null")
quant.sigma_e <- result_tmp
statistics.sigma_e <- unlist(quant.sigma_e)[c(1,2,3,5,7)]
mode.sigma_e <- inla.mmarginal(marginal.posterior.sigma_e)
allparams <- rbind(param_fixed, param_spde, param_matern, c(statistics.sigma_e, mode.sigma_e))
rownames(allparams)[nrow(allparams)] <- "sigma_e"
return(list(allparams = allparams, df_for_plot_spde = df_for_plot_spde, df_for_plot_matern = df_for_plot_matern))
}
We first load the data in the file pems_repl1_data.RData
and extract the data from the graph.
# Load the data
load(here("data_files/pems_repl1_data.RData"))
# Extract the data from the graph
data <- graph$get_data()
Below we extract the locations to compute the distance matrix. Using
this matrix, we define the groups for cross-validation. Observe that we
only compute the distance matrix for the first replicate and compute the
groups for it. As all replicates share the same locations, we can use
the groups structure from the first replicate for all replicates.
Press the Show button below to reveal the code.
# Define aux data frame to compute the distance matrix
aux <- data |> filter(repl == 1) |>
rename(distance_on_edge = .distance_on_edge, edge_number = .edge_number) |> # Rename the variables (because graph$compute_geodist_PtE() requires so)
as.data.frame() |> # Transform to a data frame (i.e., remove the metric_graph class)
dplyr::select(edge_number, distance_on_edge)
# Compute the distance matrix
distmatrix <- graph$compute_geodist_PtE(PtE = aux,
normalized = TRUE,
include_vertices = FALSE)
# Define the distance vector
distance = seq(from = 0, to = 10, by = 0.1)
# Compute the groups for one replicate
GROUPS <- list()
for (j in 1:length(distance)) {
GROUPS[[j]] = list()
for (i in 1:nrow(aux)) {
GROUPS[[j]][[i]] <- which(as.vector(distmatrix[i, ]) <= distance[j])
}
}
# Compute the groups for all replicates, based on the groups of the first replicate
nrowY <- length(unique(data$repl))
ncolY <- nrow(filter(data, repl == 1))
NEW_GROUPS <- list()
for (j in 1:length(distance)) {
my_list <- GROUPS[[j]]
aux_list <- list()
for (i in 0:(nrowY - 1)) {
added_vectors <- lapply(my_list, function(vec) vec + i*ncolY)
aux_list <- c(aux_list, added_vectors)
}
NEW_GROUPS[[j]] <- aux_list
}
GROUPS <- NEW_GROUPS
Below we plot to check that the groups are correctly defined.
point_of_interest <- 3 # Any number between 1 and nrow(data)
small_neighborhood <- GROUPS[[20]][[point_of_interest]]
large_neighborhood <- GROUPS[[50]][[point_of_interest]]
p <- graph$plot(vertex_size = 0) +
geom_point(data = data, aes(x = .coord_x, y = .coord_y), color = "darkviolet", size = 2) +
geom_point(data = data[large_neighborhood, ], aes(x = .coord_x, y = .coord_y), color = "green", size = 1.5) +
geom_point(data = data[small_neighborhood, ], aes(x = .coord_x, y = .coord_y), color = "blue", size = 1) +
geom_point(data = data[point_of_interest, ], aes(x = .coord_x, y = .coord_y), color = "red", size = 0.5) +
ggtitle("Groups") +
theme_minimal() +
theme(text = element_text(family = "Palatino")) +
coord_fixed()
ggplotly(p)
Below we define the non-stationary parameters.
# Non-stationary parameters
B.tau = cbind(0, 1, 0, cov, 0)
B.kappa = cbind(0, 0, 1, 0, cov)
We now model the speed records \(y_i\) as 13 independent replicates
satisfying \[\begin{equation}
\label{applimodel}
y_i|u(\cdot)\sim N(\beta_0 + \beta_1\text{mean.cov}(s_i) +
u(s_i),\sigma_\epsilon^2),\;i = 1,\dots, 314,
\end{equation}\] where \(u(\cdot)\) is a Gaussian process on the
highway network. We consider stationary models with \(\kappa,\tau>0\) and non-stationary
models where \(\tau\) and \(\kappa\) are given by \[\begin{equation}
\label{logregressions}
\begin{aligned}
\log(\tau(s)) &= \theta_1 + \theta_3 \text{std.cov}(s),\\
\log(\kappa(s)) &= \theta_2 + \theta_4 \text{std.cov}(s).
\end{aligned}
\end{equation}\]
For each of the two classes of models, we consider three cases: when
(1) \(\nu\) is fixed to 0.5 or (2) 1.5,
and (3) \(\nu\) is estimated from the
data.
Below cov
refers to \(\text{std.cov}(s)\) and
mean_value
refers to \(\text{mean.cov}(s)\).
Case \(\nu = 0.5\)
We first consider the stationary model.
Press the Show button below to reveal the code.
# Build the model
rspde_model_stat <- rspde.metric_graph(graph,
parameterization = "spde",
nu = 0.5)
# Prepare the data for fitting
data_rspde_bru_stat <- graph_data_rspde(rspde_model_stat,
repl = ".all",
bru = TRUE,
repl_col = "repl")
# Define the component
cmp_stat <- y ~ -1 +
Intercept(1) +
mean_value +
field(cbind(.edge_number, .distance_on_edge),
model = rspde_model_stat,
replicate = repl)
# Fit the model
rspde_fit_stat <-
bru(cmp_stat,
data = data_rspde_bru_stat[["data"]],
family = "gaussian",
options = list(verbose = FALSE)
)
output_from_models <-process_model_results(rspde_fit_stat, rspde_model_stat)
parameters_statistics <- output_from_models$allparams
mean_and_mode_params_statnu0.5 <- parameters_statistics[, c(1,6)]
rspde_fit_statnu0.5 <- rspde_fit_stat
# Summarize the results
summary(rspde_fit_stat)
## inlabru version: 2.12.0.9002
## INLA version: 24.12.11
## Components:
## Intercept: main = linear(1), group = exchangeable(1L), replicate = iid(1L), NULL
## mean_value: main = linear(mean_value), group = exchangeable(1L), replicate = iid(1L), NULL
## field: main = cgeneric(cbind(.edge_number, .distance_on_edge)), group = exchangeable(1L), replicate = iid(repl), NULL
## Likelihoods:
## Family: 'gaussian'
## Tag: ''
## Data class: 'metric_graph_data', 'data.frame'
## Response class: 'numeric'
## Predictor: y ~ .
## Used components: effects[Intercept, mean_value, field], latent[]
## Time used:
## Pre = 0.221, Running = 12.9, Post = 5.87, Total = 19
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## Intercept -14.463 1.556 -17.532 -14.461 -11.403 -14.460 0
## mean_value 1.276 0.021 1.236 1.276 1.317 1.276 0
##
## Random effects:
## Name Model
## field CGeneric
##
## Model hyperparameters:
## mean sd 0.025quant 0.5quant
## Precision for the Gaussian observations 0.014 0.000 0.013 0.014
## Theta1 for field -1.497 0.048 -1.590 -1.498
## Theta2 for field -2.983 0.197 -3.398 -2.974
## 0.975quant mode
## Precision for the Gaussian observations 0.014 0.014
## Theta1 for field -1.399 -1.503
## Theta2 for field -2.625 -2.931
##
## Deviance Information Criterion (DIC) ...............: 29843.76
## Deviance Information Criterion (DIC, saturated) ....: 4794.42
## Effective number of parameters .....................: 717.50
##
## Watanabe-Akaike information criterion (WAIC) ...: 29813.53
## Effective number of parameters .................: 602.21
##
## Marginal log-Likelihood: -15148.04
## is computed
## Posterior summaries for the linear predictor and the fitted values are computed
## (Posterior marginals needs also 'control.compute=list(return.marginals.predictor=TRUE)')
Press the Show button below to reveal the code.
# Plot the estimates of the parameters
ggplot(output_from_models$df_for_plot_spde) + geom_line(aes(x = x, y = y)) +
facet_wrap(~parameter, scales = "free") + labs(y = "Density") +
theme(text = element_text(family = "Palatino"))
Press the Show button below to reveal the code.
ggplot(output_from_models$df_for_plot_matern) + geom_line(aes(x = x, y = y)) +
facet_wrap(~parameter, scales = "free") + labs(y = "Density") +
theme(text = element_text(family = "Palatino"))
We now fit the non-stationary model.
Press the Show button below to reveal the code.
# Build the model
rspde_model_nonstat <- rspde.metric_graph(graph,
B.tau = B.tau,
B.kappa = B.kappa,
parameterization = "spde",
nu = 0.5)
# Prepare the data for fitting
data_rspde_bru_nonstat <- graph_data_rspde(rspde_model_nonstat,
repl = ".all",
bru = TRUE,
repl_col = "repl")
# Define the component
cmp_nonstat <- y ~ -1 +
Intercept(1) +
mean_value +
field(cbind(.edge_number, .distance_on_edge),
model = rspde_model_nonstat,
replicate = repl)
# Fit the model
rspde_fit_nonstat <-
bru(cmp_nonstat,
data = data_rspde_bru_nonstat[["data"]],
family = "gaussian",
options = list(verbose = FALSE)
)
output_from_models <- process_model_results(rspde_fit_nonstat, rspde_model_nonstat)
parameters_statistics <- output_from_models$allparams
mean_and_mode_params_nonstatnu0.5 <- parameters_statistics[, c(1,6)]
rspde_fit_nonstatnu0.5 <- rspde_fit_nonstat
# Summarize the results
summary(rspde_fit_nonstat)
## inlabru version: 2.12.0.9002
## INLA version: 24.12.11
## Components:
## Intercept: main = linear(1), group = exchangeable(1L), replicate = iid(1L), NULL
## mean_value: main = linear(mean_value), group = exchangeable(1L), replicate = iid(1L), NULL
## field: main = cgeneric(cbind(.edge_number, .distance_on_edge)), group = exchangeable(1L), replicate = iid(repl), NULL
## Likelihoods:
## Family: 'gaussian'
## Tag: ''
## Data class: 'metric_graph_data', 'data.frame'
## Response class: 'numeric'
## Predictor: y ~ .
## Used components: effects[Intercept, mean_value, field], latent[]
## Time used:
## Pre = 0.173, Running = 32.5, Post = 5.28, Total = 38
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## Intercept -4.528 1.994 -8.425 -4.533 -0.604 -4.532 0
## mean_value 1.126 0.030 1.068 1.126 1.184 1.126 0
##
## Random effects:
## Name Model
## field CGeneric
##
## Model hyperparameters:
## mean sd 0.025quant 0.5quant
## Precision for the Gaussian observations 0.015 0.000 0.014 0.015
## Theta1 for field -1.184 0.062 -1.303 -1.185
## Theta2 for field -6.287 2.100 -11.243 -5.956
## Theta3 for field -0.614 0.035 -0.686 -0.613
## Theta4 for field 3.002 1.675 0.696 2.740
## 0.975quant mode
## Precision for the Gaussian observations 0.016 0.015
## Theta1 for field -1.061 -1.187
## Theta2 for field -3.401 -4.458
## Theta3 for field -0.547 -0.610
## Theta4 for field 6.953 1.556
##
## Deviance Information Criterion (DIC) ...............: 29452.98
## Deviance Information Criterion (DIC, saturated) ....: 4717.64
## Effective number of parameters .....................: 638.98
##
## Watanabe-Akaike information criterion (WAIC) ...: 29491.49
## Effective number of parameters .................: 580.43
##
## Marginal log-Likelihood: -14963.96
## is computed
## Posterior summaries for the linear predictor and the fitted values are computed
## (Posterior marginals needs also 'control.compute=list(return.marginals.predictor=TRUE)')
Press the Show button below to reveal the code.
# Plot the estimates of the parameters
ggplot(output_from_models$df_for_plot_spde) + geom_line(aes(x = x, y = y)) +
facet_wrap(~parameter, scales = "free") + labs(y = "Density") +
theme(text = element_text(family = "Palatino"))
Press the Show button below to reveal the code.
ggplot(output_from_models$df_for_plot_matern) + geom_line(aes(x = x, y = y)) +
facet_wrap(~parameter, scales = "free") + labs(y = "Density") +
theme(text = element_text(family = "Palatino"))
Below we consider the prediction of replicate 14.
Press the Show button below to reveal the code.
# Load the maps p12 and p13 from pems_repl1 vignette
load(here("data_files/maps_zoom12and13from_stadia.RData"))
# We consider replicate 14
replicate.number <- 1
# Prepare the data for prediction
data_prd_list_for_rep <- data_prd_list_mesh
data_prd_list_for_rep[["mean_value"]] <- cov_for_mean_to_plot
data_prd_list_for_rep[["repl"]] <- rep(replicate.number, nrow(data_prd_list_mesh))
# Perform the prediction
repl1_pred_full <- predict(rspde_fit_nonstat, newdata = data_prd_list_for_rep, ~Intercept + mean_value + field_eval(cbind(.edge_number, .distance_on_edge), replicate = repl))
repl1_pred_mean <- repl1_pred_full$mean
# Extract the Euclidean coordinates of the mesh points
xypoints <- graph$mesh$V
# Extract the range of the coordinates
x_left <- range(xypoints[,1])[1]
x_right <- range(xypoints[,1])[2]
y_bottom <- range(xypoints[,2])[1]
y_top <- range(xypoints[,2])[2]
# Define coordinates for small windows
coordx_lwr1 <- -121.878
coordx_upr1 <- -121.828
coordy_lwr1 <- 37.315
coordy_upr1 <- 37.365
coordx_lwr2<- -122.075
coordx_upr2 <- -122.025
coordy_lwr2 <- 37.365
coordy_upr2 <- 37.415
# Define the colors for the windows
lower_color <- "darkred" # Dark purple
upper_color <- "darkblue" # Yellow
# Plot the field on top of the map
f12 <- graph$plot_function(X = repl1_pred_mean,
vertex_size = 0,
p = p12,
edge_width = 0.5) +
theme_minimal() +
theme(text = element_text(family = "Palatino"),
axis.text = element_text(size = 8),
legend.text = element_text(size = 8),
plot.margin = unit(-0.4*c(1,0,1,1), "cm")
) +
labs(color = "", x = "", y = "") +
xlim(x_left, x_right) +
ylim(y_bottom, y_top)
# Plot the field on top of the map
f13 <- graph$plot_function(X = repl1_pred_mean,
vertex_size = 0,
p = p13,
edge_width = 0.5) +
theme_minimal() +
theme(text = element_text(family = "Palatino"),
axis.text = element_text(size = 8),
legend.text = element_text(size = 8),
plot.margin = unit(-0.4*c(1,0,1,1), "cm")
) +
labs(color = "", x = "", y = "") +
xlim(x_left, x_right) +
ylim(y_bottom, y_top)
g12 <- graph$plot(data = "y", group = 1, vertex_size = 0, p = f12, edge_width = 0, data_size = 1) +
labs(color = "", x = "", y = "") +
annotate("segment", x = coordx_lwr1, y = coordy_lwr1, xend = coordx_upr1, yend = coordy_lwr1,
linewidth = 0.4, color = upper_color) + # Bottom line
annotate("segment", x = coordx_lwr1, y = coordy_upr1, xend = coordx_upr1, yend = coordy_upr1,
linewidth = 0.4, color = upper_color) + # Top line
annotate("segment", x = coordx_lwr1, y = coordy_lwr1, xend = coordx_lwr1, yend = coordy_upr1,
linewidth = 0.4, color = upper_color) + # Left line
annotate("segment", x = coordx_upr1, y = coordy_lwr1, xend = coordx_upr1, yend = coordy_upr1,
linewidth = 0.4, color = upper_color) + # Right line
annotate("segment", x = coordx_lwr2, y = coordy_lwr2, xend = coordx_upr2, yend = coordy_lwr2,
linewidth = 0.4, color = lower_color) +
annotate("segment", x = coordx_lwr2, y = coordy_upr2, xend = coordx_upr2, yend = coordy_upr2,
linewidth = 0.4, color = lower_color) +
annotate("segment", x = coordx_lwr2, y = coordy_lwr2, xend = coordx_lwr2, yend = coordy_upr2,
linewidth = 0.4, color = lower_color) +
annotate("segment", x = coordx_upr2, y = coordy_lwr2, xend = coordx_upr2, yend = coordy_upr2,
linewidth = 0.4, color = lower_color)
g13 <- graph$plot(data = "y", group = 1, vertex_size = 0, p = f13, edge_width = 0, data_size = 1) +
labs(color = "", x = "", y = "") +
annotate("segment", x = coordx_lwr1, y = coordy_lwr1, xend = coordx_upr1, yend = coordy_lwr1,
linewidth = 0.4, color = upper_color) + # Bottom line
annotate("segment", x = coordx_lwr1, y = coordy_upr1, xend = coordx_upr1, yend = coordy_upr1,
linewidth = 0.4, color = upper_color) + # Top line
annotate("segment", x = coordx_lwr1, y = coordy_lwr1, xend = coordx_lwr1, yend = coordy_upr1,
linewidth = 0.4, color = upper_color) + # Left line
annotate("segment", x = coordx_upr1, y = coordy_lwr1, xend = coordx_upr1, yend = coordy_upr1,
linewidth = 0.4, color = upper_color) + # Right line
annotate("segment", x = coordx_lwr2, y = coordy_lwr2, xend = coordx_upr2, yend = coordy_lwr2,
linewidth = 0.4, color = lower_color) +
annotate("segment", x = coordx_lwr2, y = coordy_upr2, xend = coordx_upr2, yend = coordy_upr2,
linewidth = 0.4, color = lower_color) +
annotate("segment", x = coordx_lwr2, y = coordy_lwr2, xend = coordx_lwr2, yend = coordy_upr2,
linewidth = 0.4, color = lower_color) +
annotate("segment", x = coordx_upr2, y = coordy_lwr2, xend = coordx_upr2, yend = coordy_upr2,
linewidth = 0.4, color = lower_color)
r1 <- g13 + xlim(coordx_lwr1, coordx_upr1) +
ylim(coordy_lwr1, coordy_upr1) +
theme(legend.position = "none",
plot.margin = unit(-0.2*c(1,1,1,1), "cm"))
r2 <- g13 + xlim(coordx_lwr2, coordx_upr2) +
ylim(coordy_lwr2, coordy_upr2) +
theme(legend.position = "none",
plot.margin = unit(-0.2*c(1,1,1,1), "cm"))
# Arrange p2 and p3 horizontally
left_col <- plot_grid(r2, r1, labels = NULL, ncol = 1, nrow = 2, rel_heights = c(1,1))
# Combine the top row with p1 in a grid
combined_plot <- plot_grid(left_col, g12, labels = NULL, ncol = 2, rel_widths = c(1,2))
final_plot <- annotate_figure(combined_plot, left = textGrob("Latitude", rot = 90, vjust = 1, gp = gpar(cex = 0.8)),
bottom = textGrob("Longitude", vjust = -0.5, gp = gpar(cex = 0.8)))
ggsave(here("data_files/replicate14_3_with_prediction.png"), width = 11.2, height = 5.43, plot = final_plot, dpi = 500)
# Print the combined plot
print(final_plot)
Case \(\nu = 1.5\)
We first consider the stationary model.
Press the Show button below to reveal the code.
# Build the model
rspde_model_stat <- rspde.metric_graph(graph,
parameterization = "spde",
nu = 1.5)
# Prepare the data for fitting
data_rspde_bru_stat <- graph_data_rspde(rspde_model_stat,
repl = ".all",
bru = TRUE,
repl_col = "repl")
# Define the component
cmp_stat <- y ~ -1 +
Intercept(1) +
mean_value +
field(cbind(.edge_number, .distance_on_edge),
model = rspde_model_stat,
replicate = repl)
# Fit the model
rspde_fit_stat <-
bru(cmp_stat,
data = data_rspde_bru_stat[["data"]],
family = "gaussian",
options = list(verbose = FALSE)
)
output_from_models <-process_model_results(rspde_fit_stat, rspde_model_stat)
parameters_statistics <- output_from_models$allparams
mean_and_mode_params_statnu1.5 <- parameters_statistics[, c(1,6)]
rspde_fit_statnu1.5 <- rspde_fit_stat
# Summarize the results
summary(rspde_fit_stat)
## inlabru version: 2.12.0.9002
## INLA version: 24.12.11
## Components:
## Intercept: main = linear(1), group = exchangeable(1L), replicate = iid(1L), NULL
## mean_value: main = linear(mean_value), group = exchangeable(1L), replicate = iid(1L), NULL
## field: main = cgeneric(cbind(.edge_number, .distance_on_edge)), group = exchangeable(1L), replicate = iid(repl), NULL
## Likelihoods:
## Family: 'gaussian'
## Tag: ''
## Data class: 'metric_graph_data', 'data.frame'
## Response class: 'numeric'
## Predictor: y ~ .
## Used components: effects[Intercept, mean_value, field], latent[]
## Time used:
## Pre = 0.18, Running = 11.9, Post = 4.55, Total = 16.7
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## Intercept -16.096 1.308 -18.686 -16.088 -13.555 -16.088 0
## mean_value 1.308 0.023 1.264 1.307 1.352 1.307 0
##
## Random effects:
## Name Model
## field CGeneric
##
## Model hyperparameters:
## mean sd 0.025quant 0.5quant
## Precision for the Gaussian observations 0.013 0.000 0.012 0.013
## Theta1 for field -1.104 0.105 -1.306 -1.106
## Theta2 for field -1.370 0.084 -1.540 -1.368
## 0.975quant mode
## Precision for the Gaussian observations 0.014 0.013
## Theta1 for field -0.893 -1.113
## Theta2 for field -1.207 -1.363
##
## Deviance Information Criterion (DIC) ...............: 29832.43
## Deviance Information Criterion (DIC, saturated) ....: 4580.50
## Effective number of parameters .....................: 506.73
##
## Watanabe-Akaike information criterion (WAIC) ...: 29789.61
## Effective number of parameters .................: 418.30
##
## Marginal log-Likelihood: -15154.67
## is computed
## Posterior summaries for the linear predictor and the fitted values are computed
## (Posterior marginals needs also 'control.compute=list(return.marginals.predictor=TRUE)')
Press the Show button below to reveal the code.
# Plot the estimates of the parameters
ggplot(output_from_models$df_for_plot_spde) + geom_line(aes(x = x, y = y)) +
facet_wrap(~parameter, scales = "free") + labs(y = "Density") +
theme(text = element_text(family = "Palatino"))
Press the Show button below to reveal the code.
ggplot(output_from_models$df_for_plot_matern) + geom_line(aes(x = x, y = y)) +
facet_wrap(~parameter, scales = "free") + labs(y = "Density") +
theme(text = element_text(family = "Palatino"))
We now fit the non-stationary model.
Press the Show button below to reveal the code.
# Build the model
rspde_model_nonstat <- rspde.metric_graph(graph,
B.tau = B.tau,
B.kappa = B.kappa,
parameterization = "spde",
nu = 1.5)
# Prepare the data for fitting
data_rspde_bru_nonstat <- graph_data_rspde(rspde_model_nonstat,
repl = ".all",
bru = TRUE,
repl_col = "repl")
# Define the component
cmp_nonstat <- y ~ -1 +
Intercept(1) +
mean_value +
field(cbind(.edge_number, .distance_on_edge),
model = rspde_model_nonstat,
replicate = repl)
# Fit the model
rspde_fit_nonstat <-
bru(cmp_nonstat,
data = data_rspde_bru_nonstat[["data"]],
family = "gaussian",
options = list(verbose = FALSE)
)
output_from_models <- process_model_results(rspde_fit_nonstat, rspde_model_nonstat)
parameters_statistics <- output_from_models$allparams
mean_and_mode_params_nonstatnu1.5 <- parameters_statistics[, c(1,6)]
rspde_fit_nonstatnu1.5 <- rspde_fit_nonstat
# Summarize the results
summary(rspde_fit_nonstat)
## inlabru version: 2.12.0.9002
## INLA version: 24.12.11
## Components:
## Intercept: main = linear(1), group = exchangeable(1L), replicate = iid(1L), NULL
## mean_value: main = linear(mean_value), group = exchangeable(1L), replicate = iid(1L), NULL
## field: main = cgeneric(cbind(.edge_number, .distance_on_edge)), group = exchangeable(1L), replicate = iid(repl), NULL
## Likelihoods:
## Family: 'gaussian'
## Tag: ''
## Data class: 'metric_graph_data', 'data.frame'
## Response class: 'numeric'
## Predictor: y ~ .
## Used components: effects[Intercept, mean_value, field], latent[]
## Time used:
## Pre = 0.189, Running = 24.9, Post = 5.04, Total = 30.1
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## Intercept -4.456 1.572 -7.533 -4.458 -1.365 -4.458 0
## mean_value 1.124 0.025 1.076 1.124 1.173 1.124 0
##
## Random effects:
## Name Model
## field CGeneric
##
## Model hyperparameters:
## mean sd 0.025quant 0.5quant
## Precision for the Gaussian observations 0.014 0.000 0.013 0.014
## Theta1 for field -0.337 0.112 -0.549 -0.340
## Theta2 for field -2.015 0.141 -2.307 -2.010
## Theta3 for field -0.921 0.057 -1.034 -0.921
## Theta4 for field 0.689 0.097 0.504 0.687
## 0.975quant mode
## Precision for the Gaussian observations 0.014 0.014
## Theta1 for field -0.109 -0.353
## Theta2 for field -1.755 -1.987
## Theta3 for field -0.811 -0.919
## Theta4 for field 0.887 0.678
##
## Deviance Information Criterion (DIC) ...............: 29494.44
## Deviance Information Criterion (DIC, saturated) ....: 4469.92
## Effective number of parameters .....................: 395.27
##
## Watanabe-Akaike information criterion (WAIC) ...: 29537.62
## Effective number of parameters .................: 386.62
##
## Marginal log-Likelihood: -14973.80
## is computed
## Posterior summaries for the linear predictor and the fitted values are computed
## (Posterior marginals needs also 'control.compute=list(return.marginals.predictor=TRUE)')
Press the Show button below to reveal the code.
# Plot the estimates of the parameters
ggplot(output_from_models$df_for_plot_spde) + geom_line(aes(x = x, y = y)) +
facet_wrap(~parameter, scales = "free") + labs(y = "Density") +
theme(text = element_text(family = "Palatino"))
Press the Show button below to reveal the code.
ggplot(output_from_models$df_for_plot_matern) + geom_line(aes(x = x, y = y)) +
facet_wrap(~parameter, scales = "free") + labs(y = "Density") +
theme(text = element_text(family = "Palatino"))
Case \(\nu\) estimated
We first consider the stationary model.
Press the Show button below to reveal the code.
# Build the model
rspde_model_stat <- rspde.metric_graph(graph,
parameterization = "spde")
# Prepare the data for fitting
data_rspde_bru_stat <- graph_data_rspde(rspde_model_stat,
repl = ".all",
bru = TRUE,
repl_col = "repl")
# Define the component
cmp_stat <- y ~ -1 +
Intercept(1) +
mean_value +
field(cbind(.edge_number, .distance_on_edge),
model = rspde_model_stat,
replicate = repl)
# Fit the model
rspde_fit_stat <-
bru(cmp_stat,
data = data_rspde_bru_stat[["data"]],
family = "gaussian",
options = list(verbose = FALSE)
)
output_from_models <-process_model_results(rspde_fit_stat, rspde_model_stat)
parameters_statistics <- output_from_models$allparams
mean_and_mode_params_statnuest <- parameters_statistics[, c(1,6)]
rspde_fit_statnuest <- rspde_fit_stat
# Summarize the results
summary(rspde_fit_stat)
## inlabru version: 2.12.0.9002
## INLA version: 24.12.11
## Components:
## Intercept: main = linear(1), group = exchangeable(1L), replicate = iid(1L), NULL
## mean_value: main = linear(mean_value), group = exchangeable(1L), replicate = iid(1L), NULL
## field: main = cgeneric(cbind(.edge_number, .distance_on_edge)), group = exchangeable(1L), replicate = iid(repl), NULL
## Likelihoods:
## Family: 'gaussian'
## Tag: ''
## Data class: 'metric_graph_data', 'data.frame'
## Response class: 'numeric'
## Predictor: y ~ .
## Used components: effects[Intercept, mean_value, field], latent[]
## Time used:
## Pre = 0.222, Running = 50.5, Post = 13.6, Total = 64.3
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## Intercept -14.452 1.532 -17.476 -14.448 -11.457 -14.448 0
## mean_value 1.276 0.020 1.236 1.276 1.316 1.276 0
##
## Random effects:
## Name Model
## field CGeneric
##
## Model hyperparameters:
## mean sd 0.025quant 0.5quant
## Precision for the Gaussian observations 0.014 0.000 0.013 0.014
## Theta1 for field -1.496 0.042 -1.575 -1.497
## Theta2 for field -2.971 0.078 -3.137 -2.967
## Theta3 for field -1.091 0.037 -1.159 -1.092
## 0.975quant mode
## Precision for the Gaussian observations 0.014 0.014
## Theta1 for field -1.410 -1.503
## Theta2 for field -2.832 -2.947
## Theta3 for field -1.013 -1.100
##
## Deviance Information Criterion (DIC) ...............: 29846.42
## Deviance Information Criterion (DIC, saturated) ....: 4792.55
## Effective number of parameters .....................: 713.61
##
## Watanabe-Akaike information criterion (WAIC) ...: 29814.15
## Effective number of parameters .................: 597.47
##
## Marginal log-Likelihood: -15152.96
## is computed
## Posterior summaries for the linear predictor and the fitted values are computed
## (Posterior marginals needs also 'control.compute=list(return.marginals.predictor=TRUE)')
Press the Show button below to reveal the code.
# Plot the estimates of the parameters
ggplot(output_from_models$df_for_plot_spde) + geom_line(aes(x = x, y = y)) +
facet_wrap(~parameter, scales = "free") + labs(y = "Density") +
theme(text = element_text(family = "Palatino"))
Press the Show button below to reveal the code.
ggplot(output_from_models$df_for_plot_matern) + geom_line(aes(x = x, y = y)) +
facet_wrap(~parameter, scales = "free") + labs(y = "Density") +
theme(text = element_text(family = "Palatino"))
We now fit the non-stationary model.
Press the Show button below to reveal the code.
# Build the model
rspde_model_nonstat <- rspde.metric_graph(graph,
B.tau = B.tau,
B.kappa = B.kappa,
parameterization = "spde")
# Prepare the data for fitting
data_rspde_bru_nonstat <- graph_data_rspde(rspde_model_nonstat,
repl = ".all",
bru = TRUE,
repl_col = "repl")
# Define the component
cmp_nonstat <- y ~ -1 +
Intercept(1) +
mean_value +
field(cbind(.edge_number, .distance_on_edge),
model = rspde_model_nonstat,
replicate = repl)
# Fit the model
rspde_fit_nonstat <-
bru(cmp_nonstat,
data = data_rspde_bru_nonstat[["data"]],
family = "gaussian",
options = list(verbose = FALSE)
)
output_from_models <- process_model_results(rspde_fit_nonstat, rspde_model_nonstat)
parameters_statistics <- output_from_models$allparams
mean_and_mode_params_nonstatnuest <- parameters_statistics[, c(1,6)]
rspde_fit_nonstatnuest <- rspde_fit_nonstat
# Summarize the results
summary(rspde_fit_nonstat)
## inlabru version: 2.12.0.9002
## INLA version: 24.12.11
## Components:
## Intercept: main = linear(1), group = exchangeable(1L), replicate = iid(1L), NULL
## mean_value: main = linear(mean_value), group = exchangeable(1L), replicate = iid(1L), NULL
## field: main = cgeneric(cbind(.edge_number, .distance_on_edge)), group = exchangeable(1L), replicate = iid(repl), NULL
## Likelihoods:
## Family: 'gaussian'
## Tag: ''
## Data class: 'metric_graph_data', 'data.frame'
## Response class: 'numeric'
## Predictor: y ~ .
## Used components: effects[Intercept, mean_value, field], latent[]
## Time used:
## Pre = 0.216, Running = 409, Post = 12.2, Total = 421
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## Intercept -4.176 1.718 -7.541 -4.178 -0.800 -4.178 0
## mean_value 1.122 0.026 1.070 1.122 1.174 1.122 0
##
## Random effects:
## Name Model
## field CGeneric
##
## Model hyperparameters:
## mean sd 0.025quant 0.5quant
## Precision for the Gaussian observations 0.015 0.000 0.014 0.015
## Theta1 for field 0.136 0.070 -0.006 0.138
## Theta2 for field -2.423 0.066 -2.547 -2.424
## Theta3 for field -0.734 0.044 -0.821 -0.734
## Theta4 for field 0.664 0.060 0.545 0.664
## Theta5 for field 0.944 0.065 0.817 0.944
## 0.975quant mode
## Precision for the Gaussian observations 0.015 0.015
## Theta1 for field 0.270 0.145
## Theta2 for field -2.289 -2.431
## Theta3 for field -0.649 -0.733
## Theta4 for field 0.783 0.665
## Theta5 for field 1.072 0.945
##
## Deviance Information Criterion (DIC) ...............: 29418.94
## Deviance Information Criterion (DIC, saturated) ....: 4672.34
## Effective number of parameters .....................: 588.94
##
## Watanabe-Akaike information criterion (WAIC) ...: 29453.51
## Effective number of parameters .................: 534.73
##
## Marginal log-Likelihood: -14959.25
## is computed
## Posterior summaries for the linear predictor and the fitted values are computed
## (Posterior marginals needs also 'control.compute=list(return.marginals.predictor=TRUE)')
Press the Show button below to reveal the code.
# Plot the estimates of the parameters
ggplot(output_from_models$df_for_plot_spde) + geom_line(aes(x = x, y = y)) +
facet_wrap(~parameter, scales = "free") + labs(y = "Density") +
theme(text = element_text(family = "Palatino"))
Press the Show button below to reveal the code.
ggplot(output_from_models$df_for_plot_matern) + geom_line(aes(x = x, y = y)) +
facet_wrap(~parameter, scales = "free") + labs(y = "Density") +
theme(text = element_text(family = "Palatino"))
Below we perform leave-group-out pseudo cross-validation (Liu and Rue 2022) following the strategy from
(Bolin, Simas, and Xiong 2023).
Press the Show button below to reveal the code.
mse.statnu0.5 <- mse.nonstatnu0.5 <- ls.statnu0.5 <- ls.nonstatnu0.5 <- rep(0,length(distance))
mse.statnu1.5 <- mse.nonstatnu1.5 <- ls.statnu1.5 <- ls.nonstatnu1.5 <- rep(0,length(distance))
mse.statnuest <- mse.nonstatnuest <- ls.statnuest <- ls.nonstatnuest <- rep(0,length(distance))
# cross-validation for-loop
for (j in 1:length(distance)) {
print(j)
# cross-validation of the stationary model
cv.statnu0.5 <- inla.group.cv(rspde_fit_statnu0.5, groups = GROUPS[[j]])
cv.statnu1.5 <- inla.group.cv(rspde_fit_statnu1.5, groups = GROUPS[[j]])
cv.statnuest <- inla.group.cv(rspde_fit_statnuest, groups = GROUPS[[j]])
# cross-validation of the nonstationary model
cv.nonstatnu0.5 <- inla.group.cv(rspde_fit_nonstatnu0.5, groups = GROUPS[[j]])
cv.nonstatnu1.5 <- inla.group.cv(rspde_fit_nonstatnu1.5, groups = GROUPS[[j]])
cv.nonstatnuest <- inla.group.cv(rspde_fit_nonstatnuest, groups = GROUPS[[j]])
# obtain MSE and LS
mse.statnu0.5[j] <- mean((cv.statnu0.5$mean - data$y)^2)
mse.statnu1.5[j] <- mean((cv.statnu1.5$mean - data$y)^2)
mse.statnuest[j] <- mean((cv.statnuest$mean - data$y)^2)
mse.nonstatnu0.5[j] <- mean((cv.nonstatnu0.5$mean - data$y)^2)
mse.nonstatnu1.5[j] <- mean((cv.nonstatnu1.5$mean - data$y)^2)
mse.nonstatnuest[j] <- mean((cv.nonstatnuest$mean - data$y)^2)
ls.statnu0.5[j] <- mean(log(cv.statnu0.5$cv))
ls.statnu1.5[j] <- mean(log(cv.statnu1.5$cv))
ls.statnuest[j] <- mean(log(cv.statnuest$cv))
ls.nonstatnu0.5[j] <- mean(log(cv.nonstatnu0.5$cv))
ls.nonstatnu1.5[j] <- mean(log(cv.nonstatnu1.5$cv))
ls.nonstatnuest[j] <- mean(log(cv.nonstatnuest$cv))
}
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
## [1] 7
## [1] 8
## [1] 9
## [1] 10
## [1] 11
## [1] 12
## [1] 13
## [1] 14
## [1] 15
## [1] 16
## [1] 17
## [1] 18
## [1] 19
## [1] 20
## [1] 21
## [1] 22
## [1] 23
## [1] 24
## [1] 25
## [1] 26
## [1] 27
## [1] 28
## [1] 29
## [1] 30
## [1] 31
## [1] 32
## [1] 33
## [1] 34
## [1] 35
## [1] 36
## [1] 37
## [1] 38
## [1] 39
## [1] 40
## [1] 41
## [1] 42
## [1] 43
## [1] 44
## [1] 45
## [1] 46
## [1] 47
## [1] 48
## [1] 49
## [1] 50
## [1] 51
## [1] 52
## [1] 53
## [1] 54
## [1] 55
## [1] 56
## [1] 57
## [1] 58
## [1] 59
## [1] 60
## [1] 61
## [1] 62
## [1] 63
## [1] 64
## [1] 65
## [1] 66
## [1] 67
## [1] 68
## [1] 69
## [1] 70
## [1] 71
## [1] 72
## [1] 73
## [1] 74
## [1] 75
## [1] 76
## [1] 77
## [1] 78
## [1] 79
## [1] 80
## [1] 81
## [1] 82
## [1] 83
## [1] 84
## [1] 85
## [1] 86
## [1] 87
## [1] 88
## [1] 89
## [1] 90
## [1] 91
## [1] 92
## [1] 93
## [1] 94
## [1] 95
## [1] 96
## [1] 97
## [1] 98
## [1] 99
## [1] 100
## [1] 101
# Create data frames
mse_df <- data.frame(
distance,
Statnu0.5 = mse.statnu0.5,
Nonstatnu0.5 = mse.nonstatnu0.5,
Statnu1.5 = mse.statnu1.5,
Nonstatnu1.5 = mse.nonstatnu1.5,
Statnuest = mse.statnuest,
Nonstatnuest = mse.nonstatnuest
)
ls_df <- data.frame(
distance,
Statnu0.5 = -ls.statnu0.5,
Nonstatnu0.5 = -ls.nonstatnu0.5,
Statnu1.5 = -ls.statnu1.5,
Nonstatnu1.5 = -ls.nonstatnu1.5,
Statnuest = -ls.statnuest,
Nonstatnuest = -ls.nonstatnuest
)
Below we plot the cross-validation results.
Press the Show button below to reveal the code.
choose_index <- seq(2, nrow(mse_df), by = 3)
mse_df_red <- mse_df[choose_index,]
ls_df_red <- ls_df[choose_index,]
# Convert to long format
mse_long <- mse_df_red %>%
pivot_longer(cols = -distance, names_to = "nu", values_to = "MSE")
ls_long <- ls_df_red %>%
pivot_longer(cols = -distance, names_to = "nu", values_to = "LogScore")
# Update the label mappings with the new legend title
label_mapping <- c(
"Statnu0.5" = "1",
"Nonstatnu0.5" = "1",
"Statnu1.5" = "2",
"Nonstatnu1.5" = "2",
"Statnuest" = paste(round(mean_and_mode_params_statnuest[5,1]+0.5, 3), "(est)"),
"Nonstatnuest" = paste(round(mean_and_mode_params_nonstatnuest[7,1]+0.5, 3), "(est)")
)
# Define color and linetype mapping
color_mapping <- c(
"Statnu0.5" = "blue",
"Nonstatnu0.5" = "blue",
"Statnu1.5" = "black",
"Nonstatnu1.5" = "black",
"Statnuest" = "red",
"Nonstatnuest" = "red"
)
linetype_mapping <- c(
"Statnu0.5" = "dotdash",
"Nonstatnu0.5" = "solid",
"Statnu1.5" = "dotdash",
"Nonstatnu1.5" = "solid",
"Statnuest" = "dotdash",
"Nonstatnuest" = "solid"
)
# Plot MSE
mse_plot <- ggplot(mse_long, aes(x = distance, y = MSE, color = nu, linetype = nu)) +
geom_line(linewidth = 1) +
labs(y = "MSE", x = "Distance in km") +
scale_color_manual(values = color_mapping, labels = label_mapping, name = expression(alpha)) +
scale_linetype_manual(values = linetype_mapping, labels = label_mapping, name = expression(alpha)) +
theme_minimal() +
theme(text = element_text(family = "Palatino"))
# Plot negative log-score
ls_plot <- ggplot(ls_long, aes(x = distance, y = LogScore, color = nu, linetype = nu)) +
geom_line(linewidth = 1) +
labs(y = "Negative Log-Score", x = "Distance in km") +
scale_color_manual(values = color_mapping, labels = label_mapping, name = expression(alpha)) +
scale_linetype_manual(values = linetype_mapping, labels = label_mapping, name = expression(alpha)) +
theme_minimal() +
theme(text = element_text(family = "Palatino"))
# Combine plots with a shared legend at the top in a single line
combined_plot <- mse_plot + ls_plot +
plot_layout(guides = 'collect') &
theme(legend.position = 'right') &
guides(color = guide_legend(ncol = 1), linetype = guide_legend(nrow = 1))
# Save combined plot
ggsave(here("data_files/crossval_pems.png"), plot = combined_plot, width = 9.22, height = 4.01, dpi = 500)
# Display combined plot
print(combined_plot)
Save some of the objects to be used in the next vignette.
# Save the results
list_to_save <- list(mean_and_mode_params_statnu0.5 = mean_and_mode_params_statnu0.5,
mean_and_mode_params_nonstatnu0.5 = mean_and_mode_params_nonstatnu0.5,
mean_and_mode_params_statnu1.5 = mean_and_mode_params_statnu1.5,
mean_and_mode_params_nonstatnu1.5 = mean_and_mode_params_nonstatnu1.5,
mean_and_mode_params_statnuest = mean_and_mode_params_statnuest,
mean_and_mode_params_nonstatnuest = mean_and_mode_params_nonstatnuest,
mse_df = mse_df,
ls_df = ls_df,
B.tau = B.tau,
B.kappa = B.kappa,
graph = graph)
save(list_to_save, file = here("data_files/pems_repl2_results.RData"))
References
cite_packages(output = "paragraph", out.dir = ".")
We used R version 4.4.1 (R Core Team
2024) and the following R packages: cowplot v. 1.1.3 (Wilke 2024), ggmap v. 4.0.0.900 (Kahle and Wickham 2013), ggpubr v. 0.6.0 (Kassambara 2023), ggtext v. 0.1.2 (Wilke and Wiernik 2022), here v. 1.0.1 (Müller 2020), htmltools v. 0.5.8.1 (Cheng et al. 2024), INLA v. 24.12.11 (Rue, Martino, and Chopin 2009; Lindgren, Rue, and
Lindström 2011; Martins et al. 2013; Lindgren and Rue 2015; De Coninck
et al. 2016; Rue et al. 2017; Verbosio et al. 2017; Bakka et al. 2018;
Kourounis, Fuchs, and Schenk 2018), inlabru v. 2.12.0.9002 (Yuan et al. 2017; Bachl et al. 2019), knitr v.
1.48 (Xie 2014, 2015, 2024), latex2exp v.
0.9.6 (Meschiari 2022), Matrix v. 1.6.5
(Bates, Maechler, and Jagan 2024),
MetricGraph v. 1.4.0.9000 (Bolin, Simas, and
Wallin 2023b, 2023a, 2023c, 2024; Bolin et al. 2024),
OpenStreetMap v. 0.4.0 (Fellows and JMapViewer
library by Jan Peter Stotz 2023), osmdata v. 0.2.5 (Mark Padgham et al. 2017), patchwork v. 1.2.0
(Pedersen 2024), plotly v. 4.10.4 (Sievert 2020), plotrix v. 3.8.4 (J 2006), reshape2 v. 1.4.4 (Wickham 2007), rmarkdown v. 2.28 (Xie, Allaire, and Grolemund 2018; Xie, Dervieux, and
Riederer 2020; Allaire et al. 2024), rSPDE v. 2.4.0.9000 (Bolin and Kirchner 2020; Bolin and Simas 2023; Bolin,
Simas, and Xiong 2024), scales v. 1.3.0 (Wickham, Pedersen, and Seidel 2023), sf v.
1.0.19 (E. Pebesma 2018; E. Pebesma and Bivand
2023), sp v. 2.1.4 (E. J. Pebesma and
Bivand 2005; Bivand, Pebesma, and Gomez-Rubio 2013), tidyverse v.
2.0.0 (Wickham et al. 2019), viridis v.
0.6.4 (Garnier et al. 2023), xaringanExtra
v. 0.8.0 (Aden-Buie and Warkentin
2024).
Allaire, JJ, Yihui Xie, Christophe Dervieux, Jonathan McPherson, Javier
Luraschi, Kevin Ushey, Aron Atkins, et al. 2024.
rmarkdown: Dynamic Documents for r.
https://github.com/rstudio/rmarkdown.
Bachl, Fabian E., Finn Lindgren, David L. Borchers, and Janine B.
Illian. 2019.
“inlabru: An
R Package for Bayesian Spatial Modelling from
Ecological Survey Data.” Methods in Ecology and
Evolution 10: 760–66.
https://doi.org/10.1111/2041-210X.13168.
Bakka, Haakon, Håvard Rue, Geir-Arne Fuglstad, Andrea I. Riebler, David
Bolin, Janine Illian, Elias Krainski, Daniel P. Simpson, and Finn K.
Lindgren. 2018.
“Spatial Modelling with INLA:
A Review.” WIRES (Invited Extended Review)
xx (Feb): xx–.
http://arxiv.org/abs/1802.06350.
Bates, Douglas, Martin Maechler, and Mikael Jagan. 2024.
Matrix: Sparse and Dense Matrix Classes and
Methods.
https://CRAN.R-project.org/package=Matrix.
Bivand, Roger S., Edzer Pebesma, and Virgilio Gomez-Rubio. 2013.
Applied Spatial Data Analysis with R, Second
Edition. Springer, NY.
https://asdar-book.org/.
Bolin, David, and Kristin Kirchner. 2020.
“The Rational
SPDE Approach for Gaussian Random Fields with
General Smoothness.” Journal of Computational and Graphical
Statistics 29 (2): 274–85.
https://doi.org/10.1080/10618600.2019.1665537.
Bolin, David, Mihály Kovács, Vivek Kumar, and Alexandre B. Simas. 2024.
“Regularity and Numerical Approximation of Fractional Elliptic
Differential Equations on Compact Metric Graphs.” Mathematics
of Computation 93 (349): 2439–72.
https://doi.org/10.1090/mcom/3929.
Bolin, David, and Alexandre B. Simas. 2023.
rSPDE: Rational Approximations of Fractional
Stochastic Partial Differential Equations.
https://CRAN.R-project.org/package=rSPDE.
Bolin, David, Alexandre B. Simas, and Jonas Wallin. 2023a.
“Markov
Properties of Gaussian Random Fields on Compact Metric Graphs.”
arXiv Preprint arXiv:2304.03190.
https://doi.org/10.48550/arXiv.2304.03190.
———. 2023b.
MetricGraph: Random Fields on Metric
Graphs.
https://CRAN.R-project.org/package=MetricGraph.
———. 2023c.
“Statistical Inference for Gaussian Whittle-Matérn
Fields on Metric Graphs.” arXiv Preprint
arXiv:2304.10372.
https://doi.org/10.48550/arXiv.2304.10372.
———. 2024.
“Gaussian Whittle-Matérn Fields on Metric
Graphs.” Bernoulli 30 (2): 1611–39.
https://doi.org/10.3150/23-BEJ1647.
Bolin, David, Alexandre B. Simas, and Zhen Xiong. 2024.
“Covariance-Based Rational Approximations of Fractional SPDEs for
Computationally Efficient Bayesian Inference.” Journal of
Computational and Graphical Statistics 33 (1): 64–74.
https://doi.org/10.1080/10618600.2023.2231051.
Bolin, David, Alexandre B Simas, and Zhen Xiong. 2023.
“Covariance–Based Rational Approximations of Fractional SPDEs for
Computationally Efficient Bayesian Inference.” Journal of
Computational and Graphical Statistics, 1–11.
De Coninck, Arne, Bernard De Baets, Drosos Kourounis, Fabio Verbosio,
Olaf Schenk, Steven Maenhout, and Jan Fostier. 2016.
“Needles: Toward Large-Scale Genomic Prediction with
Marker-by-Environment Interaction.” Genetics 203 (1):
543–55.
https://doi.org/10.1534/genetics.115.179887.
Fellows, Ian, and using the JMapViewer library by Jan Peter Stotz. 2023.
OpenStreetMap: Access to Open Street Map Raster
Images.
https://CRAN.R-project.org/package=OpenStreetMap.
Garnier, Simon, Ross, Noam, Rudis, Robert, Camargo, et al. 2023.
viridis(Lite) - Colorblind-Friendly
Color Maps for r.
https://doi.org/10.5281/zenodo.4679423.
J, Lemon. 2006. “Plotrix: A Package in the Red Light
District of r.” R-News 6 (4): 8–12.
Kahle, David, and Hadley Wickham. 2013.
“ggmap: Spatial Visualization with Ggplot2.”
The R Journal 5 (1): 144–61.
https://journal.r-project.org/archive/2013-1/kahle-wickham.pdf.
Kassambara, Alboukadel. 2023.
ggpubr:
“ggplot2” Based Publication
Ready Plots.
https://CRAN.R-project.org/package=ggpubr.
Kourounis, D., A. Fuchs, and O. Schenk. 2018.
“Towards the Next
Generation of Multiperiod Optimal Power Flow Solvers.” IEEE
Transactions on Power Systems PP (99): 1–10.
https://doi.org/10.1109/TPWRS.2017.2789187.
Lindgren, Finn, and Håvard Rue. 2015.
“Bayesian Spatial Modelling
with R-INLA.” Journal of
Statistical Software 63 (19): 1–25.
http://www.jstatsoft.org/v63/i19/.
Lindgren, Finn, Håvard Rue, and Johan Lindström. 2011. “An
Explicit Link Between Gaussian Fields and
Gaussian Markov Random Fields: The Stochastic
Partial Differential Equation Approach (with Discussion).”
Journal of the Royal Statistical Society B 73 (4): 423–98.
Liu, Zhedong, and Haavard Rue. 2022. “Leave-Group-Out
Cross-Validation for Latent Gaussian Models.” arXiv Preprint
arXiv:2210.04482.
Mark Padgham, Bob Rudis, Robin Lovelace, and Maëlle Salmon. 2017.
“Osmdata.” Journal of Open Source Software 2 (14):
305.
https://doi.org/10.21105/joss.00305.
Martins, Thiago G., Daniel Simpson, Finn Lindgren, and Håvard Rue. 2013.
“Bayesian Computing with INLA: New
Features.” Computational Statistics and Data Analysis
67: 68–83.
Meschiari, Stefano. 2022.
Latex2exp: Use LaTeX Expressions in
Plots.
https://CRAN.R-project.org/package=latex2exp.
Müller, Kirill. 2020.
here: A Simpler
Way to Find Your Files.
https://CRAN.R-project.org/package=here.
Pebesma, Edzer. 2018.
“Simple Features for R:
Standardized Support for Spatial Vector Data.”
The R Journal 10 (1): 439–46.
https://doi.org/10.32614/RJ-2018-009.
Pebesma, Edzer J., and Roger Bivand. 2005.
“Classes and Methods
for Spatial Data in R.” R News 5 (2): 9–13.
https://CRAN.R-project.org/doc/Rnews/.
Pebesma, Edzer, and Roger Bivand. 2023.
Spatial
Data Science: With applications in R.
Chapman and
Hall/CRC.
https://doi.org/10.1201/9780429459016.
Pedersen, Thomas Lin. 2024.
patchwork:
The Composer of Plots.
https://CRAN.R-project.org/package=patchwork.
R Core Team. 2024.
R: A Language and Environment for
Statistical Computing. Vienna, Austria: R Foundation for
Statistical Computing.
https://www.R-project.org/.
Rue, Håvard, Sara Martino, and Nicholas Chopin. 2009. “Approximate
Bayesian Inference for Latent Gaussian Models
Using Integrated Nested Laplace Approximations (with
Discussion).” Journal of the Royal Statistical Society B
71: 319–92.
Rue, Håvard, Andrea I. Riebler, Sigrunn H. Sørbye, Janine B. Illian,
Daniel P. Simpson, and Finn K. Lindgren. 2017.
“Bayesian Computing
with INLA: A Review.” Annual
Reviews of Statistics and Its Applications 4 (March): 395–421.
http://arxiv.org/abs/1604.00860.
Sievert, Carson. 2020.
Interactive Web-Based Data Visualization with
r, Plotly, and Shiny. Chapman; Hall/CRC.
https://plotly-r.com.
Verbosio, Fabio, Arne De Coninck, Drosos Kourounis, and Olaf Schenk.
2017.
“Enhancing the Scalability of Selected Inversion
Factorization Algorithms in Genomic Prediction.” Journal of
Computational Science 22 (Supplement C): 99–108.
https://doi.org/10.1016/j.jocs.2017.08.013.
Wickham, Hadley. 2007.
“Reshaping Data with the reshape Package.” Journal of
Statistical Software 21 (12): 1–20.
http://www.jstatsoft.org/v21/i12/.
Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy
D’Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019.
“Welcome to the tidyverse.”
Journal of Open Source Software 4 (43): 1686.
https://doi.org/10.21105/joss.01686.
Wickham, Hadley, Thomas Lin Pedersen, and Dana Seidel. 2023.
scales: Scale Functions for Visualization.
https://CRAN.R-project.org/package=scales.
Wilke, Claus O. 2024.
cowplot:
Streamlined Plot Theme and Plot Annotations for “ggplot2”.
https://CRAN.R-project.org/package=cowplot.
Wilke, Claus O., and Brenton M. Wiernik. 2022.
ggtext: Improved Text Rendering Support for
“ggplot2”.
https://CRAN.R-project.org/package=ggtext.
Xie, Yihui. 2014. “knitr: A
Comprehensive Tool for Reproducible Research in R.”
In Implementing Reproducible Computational Research, edited by
Victoria Stodden, Friedrich Leisch, and Roger D. Peng. Chapman;
Hall/CRC.
———. 2015.
Dynamic Documents with R and Knitr. 2nd
ed. Boca Raton, Florida: Chapman; Hall/CRC.
https://yihui.org/knitr/.
———. 2024.
knitr: A General-Purpose
Package for Dynamic Report Generation in r.
https://yihui.org/knitr/.
Xie, Yihui, J. J. Allaire, and Garrett Grolemund. 2018.
R Markdown:
The Definitive Guide. Boca Raton, Florida: Chapman; Hall/CRC.
https://bookdown.org/yihui/rmarkdown.
Xie, Yihui, Christophe Dervieux, and Emily Riederer. 2020.
R
Markdown Cookbook. Boca Raton, Florida: Chapman; Hall/CRC.
https://bookdown.org/yihui/rmarkdown-cookbook.
Yuan, Yuan, Bachl, Fabian E., Lindgren, Finn, Borchers, et al. 2017.
“Point Process Models for Spatio-Temporal Distance Sampling Data
from a Large-Scale Survey of Blue Whales.” Ann. Appl.
Stat. 11 (4): 2270–97.
https://doi.org/10.1214/17-AOAS1078.
LS0tCnRpdGxlOiAiUGVNUyAyLCBtb2RlbGluZyIKZGF0ZTogIkNyZWF0ZWQ6IDA1LTA3LTIwMjQuIExhc3QgbW9kaWZpZWQ6IGByIGZvcm1hdChTeXMudGltZSgpLCAnJWQtJW0tJVkuJylgIgpvdXRwdXQ6CiAgaHRtbF9kb2N1bWVudDoKICAgIG1hdGhqYXg6ICJodHRwczovL2Nkbi5qc2RlbGl2ci5uZXQvbnBtL21hdGhqYXhAMy9lczUvdGV4LW1tbC1jaHRtbC5qcyIKICAgIGhpZ2hsaWdodDogcHlnbWVudHMKICAgIHRoZW1lOiBmbGF0bHkKICAgIGNvZGVfZm9sZGluZzogc2hvdyAjIGNsYXNzLnNvdXJjZSA9ICJmb2xkLWhpZGUiIHRvIGhpZGUgY29kZSBhbmQgYWRkIGEgYnV0dG9uIHRvIHNob3cgaXQKICAgIGRmX3ByaW50OiBwYWdlZAogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6CiAgICAgIGNvbGxhcHNlZDogdHJ1ZQogICAgICBzbW9vdGhfc2Nyb2xsOiB0cnVlCiAgICBudW1iZXJfc2VjdGlvbnM6IGZhbHNlCiAgICBmaWdfY2FwdGlvbjogdHJ1ZQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQphbHdheXNfYWxsb3dfaHRtbDogdHJ1ZQpiaWJsaW9ncmFwaHk6IAogIC0gcmVmZXJlbmNlcy5iaWIKICAtIGdyYXRlZnVsLXJlZnMuYmliCmhlYWRlci1pbmNsdWRlczoKICAtIFxuZXdjb21tYW5ke1xhcn17XG1hdGhiYntSfX0KICAtIFxuZXdjb21tYW5ke1xsbGF2fVsxXXtcbGVmdFx7IzFccmlnaHRcfX0KICAtIFxuZXdjb21tYW5ke1xwYXJlfVsxXXtcbGVmdCgjMVxyaWdodCl9CiAgLSBcbmV3Y29tbWFuZHtcTmNhbH17XG1hdGhjYWx7Tn19CiAgLSBcbmV3Y29tbWFuZHtcVmNhbH17XG1hdGhjYWx7Vn19CiAgLSBcbmV3Y29tbWFuZHtcRWNhbH17XG1hdGhjYWx7RX19CiAgLSBcbmV3Y29tbWFuZHtcV2NhbH17XG1hdGhjYWx7V319Ci0tLQoKYGBge3IgeGFyaW5nYW5FeHRyYS1jbGlwYm9hcmQsIGVjaG8gPSBGQUxTRX0KaHRtbHRvb2xzOjp0YWdMaXN0KAogIHhhcmluZ2FuRXh0cmE6OnVzZV9jbGlwYm9hcmQoCiAgICBidXR0b25fdGV4dCA9ICI8aSBjbGFzcz1cImZhLXNvbGlkIGZhLWNsaXBib2FyZFwiIHN0eWxlPVwiY29sb3I6ICMwMDAwOEJcIj48L2k+IiwKICAgIHN1Y2Nlc3NfdGV4dCA9ICI8aSBjbGFzcz1cImZhIGZhLWNoZWNrXCIgc3R5bGU9XCJjb2xvcjogIzkwQkU2RFwiPjwvaT4iLAogICAgZXJyb3JfdGV4dCA9ICI8aSBjbGFzcz1cImZhIGZhLXRpbWVzLWNpcmNsZVwiIHN0eWxlPVwiY29sb3I6ICNGOTQxNDRcIj48L2k+IgogICksCiAgcm1hcmtkb3duOjpodG1sX2RlcGVuZGVuY3lfZm9udF9hd2Vzb21lKCkKKQpgYGAKCgpgYGB7Y3NzLCBlY2hvID0gRkFMU0V9CmJvZHkgLm1haW4tY29udGFpbmVyIHsKICBtYXgtd2lkdGg6IDEwMCUgIWltcG9ydGFudDsKICB3aWR0aDogMTAwJSAhaW1wb3J0YW50Owp9CmJvZHkgewogIG1heC13aWR0aDogMTAwJSAhaW1wb3J0YW50Owp9Cgpib2R5LCB0ZCB7CiAgIGZvbnQtc2l6ZTogMTZweDsKfQpjb2RlLnJ7CiAgZm9udC1zaXplOiAxNHB4Owp9CnByZSB7CiAgZm9udC1zaXplOiAxNHB4Cn0KLmN1c3RvbS1ib3ggewogIGJhY2tncm91bmQtY29sb3I6ICNmNWY3ZmE7IC8qIExpZ2h0IGdyZXktYmx1ZSBiYWNrZ3JvdW5kICovCiAgYm9yZGVyLWNvbG9yOiAjZTFlOGVkOyAvKiBMaWdodCBib3JkZXIgY29sb3IgKi8KICBjb2xvcjogIzJjM2U1MDsgLyogRGFyayB0ZXh0IGNvbG9yICovCiAgcGFkZGluZzogMTVweDsgLyogUGFkZGluZyBpbnNpZGUgdGhlIGJveCAqLwogIGJvcmRlci1yYWRpdXM6IDVweDsgLyogUm91bmRlZCBjb3JuZXJzICovCiAgbWFyZ2luLWJvdHRvbTogMjBweDsgLyogU3BhY2luZyBiZWxvdyB0aGUgYm94ICovCn0KLmNhcHRpb24gewogIG1hcmdpbjogYXV0bzsKICB0ZXh0LWFsaWduOiBjZW50ZXI7CiAgbWFyZ2luLWJvdHRvbTogMjBweDsgLyogU3BhY2luZyBiZWxvdyB0aGUgYm94ICovCn0KYGBgCgoKR28gYmFjayB0byB0aGUgW0Fib3V0IHBhZ2VdKGFib3V0Lmh0bWwpLiAKCgpUaGlzIHZpZ25ldHRlIGNvbXBhcmVzIGRpZmZlcmVudCBtb2RlbHMgZm9yIFBlTVMgZGF0YS4gSXQgdXNlcyBbKipgcGVtc19yZXBsMV9kYXRhLlJEYXRhYCoqXShodHRwczovL2dpdGh1Yi5jb20vbGVuaW5yYWZhZWxyaWVyYXNlZ3VyYS9HV01GL2Jsb2IvbWFpbi9kYXRhX2ZpbGVzL3BlbXNfcmVwbDFfZGF0YS5SRGF0YSksIHdoaWNoIGlzIGEgZmlsZSB3aXRoIGEgZ3JhcGggYW5kIGRhdGEgY3JlYXRlZCBpbiBbcGVtc19yZXBsMS5odG1sXShwZW1zX3JlcGwxLmh0bWwpLgoKTGV0IHVzIHNldCBzb21lIGdsb2JhbCBvcHRpb25zIGZvciBhbGwgY29kZSBjaHVua3MgaW4gdGhpcyBkb2N1bWVudC4KCgpgYGB7cn0KIyBTZXQgc2VlZCBmb3IgcmVwcm9kdWNpYmlsaXR5CnNldC5zZWVkKDE5MzgpIAojIFNldCBnbG9iYWwgb3B0aW9ucyBmb3IgYWxsIGNvZGUgY2h1bmtzCmtuaXRyOjpvcHRzX2NodW5rJHNldCgKICAjIERpc2FibGUgbWVzc2FnZXMgcHJpbnRlZCBieSBSIGNvZGUgY2h1bmtzCiAgbWVzc2FnZSA9IEZBTFNFLCAgICAKICAjIERpc2FibGUgd2FybmluZ3MgcHJpbnRlZCBieSBSIGNvZGUgY2h1bmtzCiAgd2FybmluZyA9IEZBTFNFLCAgICAKICAjIFNob3cgUiBjb2RlIHdpdGhpbiBjb2RlIGNodW5rcyBpbiBvdXRwdXQKICBlY2hvID0gVFJVRSwgICAgICAgIAogICMgSW5jbHVkZSBib3RoIFIgY29kZSBhbmQgaXRzIHJlc3VsdHMgaW4gb3V0cHV0CiAgaW5jbHVkZSA9IFRSVUUsICAgICAKICAjIEV2YWx1YXRlIFIgY29kZSBjaHVua3MKICBldmFsID0gVFJVRSwgICAgICAgCiAgIyBFbmFibGUgY2FjaGluZyBvZiBSIGNvZGUgY2h1bmtzIGZvciBmYXN0ZXIgcmVuZGVyaW5nCiAgY2FjaGUgPSBGQUxTRSwgICAgICAKICAjIEFsaWduIGZpZ3VyZXMgaW4gdGhlIGNlbnRlciBvZiB0aGUgb3V0cHV0CiAgZmlnLmFsaWduID0gImNlbnRlciIsCiAgIyBFbmFibGUgcmV0aW5hIGRpc3BsYXkgZm9yIGhpZ2gtcmVzb2x1dGlvbiBmaWd1cmVzCiAgcmV0aW5hID0gMiwKICAjIFNob3cgZXJyb3JzIGluIHRoZSBvdXRwdXQgaW5zdGVhZCBvZiBzdG9wcGluZyByZW5kZXJpbmcKICBlcnJvciA9IFRSVUUsCiAgIyBEbyBub3QgY29sbGFwc2UgY29kZSBhbmQgb3V0cHV0IGludG8gYSBzaW5nbGUgYmxvY2sKICBjb2xsYXBzZSA9IEZBTFNFCikKYGBgCgpCZWxvdyB3ZSBsb2FkIHRoZSBuZWNlc3NhcnkgbGlicmFyaWVzLgoKYGBge3J9CmxpYnJhcnkoSU5MQSkKbGlicmFyeShpbmxhYnJ1KQpsaWJyYXJ5KHJTUERFKQpsaWJyYXJ5KE1ldHJpY0dyYXBoKQoKbGlicmFyeShkcGx5cikKbGlicmFyeShwbG90bHkpCmxpYnJhcnkoc2NhbGVzKQpsaWJyYXJ5KHBhdGNod29yaykKCmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeShjb3dwbG90KQpsaWJyYXJ5KGdncHVicikgI2Fubm90YXRlX2ZpZ3VyZSgpCmxpYnJhcnkoZ3JpZCkgI3RleHRHcm9iKCkKbGlicmFyeShnZ21hcCkKCmxpYnJhcnkodmlyaWRpcykKbGlicmFyeShPcGVuU3RyZWV0TWFwKQoKCmxpYnJhcnkodGlkeXIpCmxpYnJhcnkoc2YpCgpsaWJyYXJ5KGhlcmUpCmxpYnJhcnkocm1hcmtkb3duKQpsaWJyYXJ5KGdyYXRlZnVsKSAjIENpdGUgYWxsIGxvYWRlZCBwYWNrYWdlcwpgYGAKCgpCZWxvdyB3ZSBkZWZpbmUgdGhlIGZ1bmN0aW9uIGBjYXB0aW9uZXIoKWAgdG8gZ2VuZXJhdGUgY2FwdGlvbnMgZm9yIHRoZSBmaWd1cmVzIGFuZCB0aGUgZnVuY3Rpb24gYHByb2Nlc3NfbW9kZWxfcmVzdWx0cygpYCB0byBleHRyYWN0IHRoZSBzdW1tYXJ5IG9mIHRoZSBwYXJhbWV0ZXJzIG9mIHRoZSBtb2RlbC4KCjxkaXYgc3R5bGU9ImNvbG9yOiBibHVlOyI+CioqKioqKioqCioqUHJlc3MgdGhlIFNob3cgYnV0dG9uIGJlbG93IHRvIHJldmVhbCB0aGUgY29kZS4qKgoKKioqKioqKioKPC9kaXY+CgpgYGB7ciwgY2xhc3Muc291cmNlID0gImZvbGQtaGlkZSJ9CiMgU3RhcnQgdGhlIGZpZ3VyZSBjb3VudGVyCmZpZ19jb3VudCA8LSAwCiMgRGVmaW5lIHRoZSBjYXB0aW9uZXIgZnVuY3Rpb24KY2FwdGlvbmVyIDwtIGZ1bmN0aW9uKGNhcHRpb24pIHsKICBmaWdfY291bnQgPDwtIGZpZ19jb3VudCArIDEKICBwYXN0ZTAoIkZpZ3VyZSAiLCBmaWdfY291bnQsICI6ICIsIGNhcHRpb24pCn0KcHJvY2Vzc19tb2RlbF9yZXN1bHRzIDwtIGZ1bmN0aW9uKGZpdCwgbW9kZWwpIHsKICBmaXRfc3BkZSA8LSByc3BkZS5yZXN1bHQoZml0LCAiZmllbGQiLCBtb2RlbCwgcGFyYW1ldGVyaXphdGlvbiA9ICJzcGRlIikKICBmaXRfbWF0ZXJuIDwtIHJzcGRlLnJlc3VsdChmaXQsICJmaWVsZCIsIG1vZGVsLCBwYXJhbWV0ZXJpemF0aW9uID0gIm1hdGVybiIpCiAgZGZfZm9yX3Bsb3Rfc3BkZSA8LSBnZ19kZihmaXRfc3BkZSkKICBkZl9mb3JfcGxvdF9tYXRlcm4gPC0gZ2dfZGYoZml0X21hdGVybikKICBwYXJhbV9zcGRlIDwtIHN1bW1hcnkoZml0X3NwZGUpCiAgcGFyYW1fbWF0ZXJuIDwtIHN1bW1hcnkoZml0X21hdGVybikKICBwYXJhbV9maXhlZCA8LSBmaXQkc3VtbWFyeS5maXhlZFssMTo2XQogIG1hcmdpbmFsLnBvc3Rlcmlvci5zaWdtYV9lID0gaW5sYS50bWFyZ2luYWwoCiAgICBmdW4gPSBmdW5jdGlvbih4KSBleHAoLXgvMiksIAogICAgbWFyZ2luYWwgPSBmaXRbWyJpbnRlcm5hbC5tYXJnaW5hbHMuaHlwZXJwYXIiXV1bWyJMb2cgcHJlY2lzaW9uIGZvciB0aGUgR2F1c3NpYW4gb2JzZXJ2YXRpb25zIl1dKQogIHF1YW50LnNpZ21hX2UgPC0gY2FwdHVyZS5vdXRwdXQoe3Jlc3VsdF90bXAgPC0gaW5sYS56bWFyZ2luYWwobWFyZ2luYWwucG9zdGVyaW9yLnNpZ21hX2UpfSwgZmlsZSA9ICIvZGV2L251bGwiKSAKICBxdWFudC5zaWdtYV9lIDwtIHJlc3VsdF90bXAKICBzdGF0aXN0aWNzLnNpZ21hX2UgPC0gdW5saXN0KHF1YW50LnNpZ21hX2UpW2MoMSwyLDMsNSw3KV0KICBtb2RlLnNpZ21hX2UgPC0gaW5sYS5tbWFyZ2luYWwobWFyZ2luYWwucG9zdGVyaW9yLnNpZ21hX2UpCiAgYWxscGFyYW1zIDwtIHJiaW5kKHBhcmFtX2ZpeGVkLCBwYXJhbV9zcGRlLCBwYXJhbV9tYXRlcm4sIGMoc3RhdGlzdGljcy5zaWdtYV9lLCBtb2RlLnNpZ21hX2UpKQogIHJvd25hbWVzKGFsbHBhcmFtcylbbnJvdyhhbGxwYXJhbXMpXSA8LSAic2lnbWFfZSIKICByZXR1cm4obGlzdChhbGxwYXJhbXMgPSBhbGxwYXJhbXMsIGRmX2Zvcl9wbG90X3NwZGUgPSBkZl9mb3JfcGxvdF9zcGRlLCBkZl9mb3JfcGxvdF9tYXRlcm4gPSBkZl9mb3JfcGxvdF9tYXRlcm4pKQp9CmBgYAoKV2UgZmlyc3QgbG9hZCB0aGUgZGF0YSBpbiB0aGUgZmlsZSBgcGVtc19yZXBsMV9kYXRhLlJEYXRhYCBhbmQgZXh0cmFjdCB0aGUgZGF0YSBmcm9tIHRoZSBncmFwaC4KCmBgYHtyfQojIExvYWQgdGhlIGRhdGEKbG9hZChoZXJlKCJkYXRhX2ZpbGVzL3BlbXNfcmVwbDFfZGF0YS5SRGF0YSIpKQojIEV4dHJhY3QgdGhlIGRhdGEgZnJvbSB0aGUgZ3JhcGgKZGF0YSA8LSBncmFwaCRnZXRfZGF0YSgpCmBgYAoKQmVsb3cgd2UgZXh0cmFjdCB0aGUgbG9jYXRpb25zIHRvIGNvbXB1dGUgdGhlIGRpc3RhbmNlIG1hdHJpeC4gVXNpbmcgdGhpcyBtYXRyaXgsIHdlIGRlZmluZSB0aGUgZ3JvdXBzIGZvciBjcm9zcy12YWxpZGF0aW9uLiBPYnNlcnZlIHRoYXQgd2Ugb25seSBjb21wdXRlIHRoZSBkaXN0YW5jZSBtYXRyaXggZm9yIHRoZSBmaXJzdCByZXBsaWNhdGUgYW5kIGNvbXB1dGUgdGhlIGdyb3VwcyBmb3IgaXQuIEFzIGFsbCByZXBsaWNhdGVzIHNoYXJlIHRoZSBzYW1lIGxvY2F0aW9ucywgd2UgY2FuIHVzZSB0aGUgZ3JvdXBzIHN0cnVjdHVyZSBmcm9tIHRoZSBmaXJzdCByZXBsaWNhdGUgZm9yIGFsbCByZXBsaWNhdGVzLgoKPGRpdiBzdHlsZT0iY29sb3I6IGJsdWU7Ij4KKioqKioqKioKKipQcmVzcyB0aGUgU2hvdyBidXR0b24gYmVsb3cgdG8gcmV2ZWFsIHRoZSBjb2RlLioqCgoqKioqKioqKgo8L2Rpdj4KCmBgYHtyLCBjbGFzcy5zb3VyY2UgPSAiZm9sZC1oaWRlIn0KIyBEZWZpbmUgYXV4IGRhdGEgZnJhbWUgdG8gY29tcHV0ZSB0aGUgZGlzdGFuY2UgbWF0cml4CmF1eCA8LSBkYXRhIHw+IGZpbHRlcihyZXBsID09IDEpIHw+CiAgcmVuYW1lKGRpc3RhbmNlX29uX2VkZ2UgPSAuZGlzdGFuY2Vfb25fZWRnZSwgZWRnZV9udW1iZXIgPSAuZWRnZV9udW1iZXIpIHw+ICMgUmVuYW1lIHRoZSB2YXJpYWJsZXMgKGJlY2F1c2UgZ3JhcGgkY29tcHV0ZV9nZW9kaXN0X1B0RSgpIHJlcXVpcmVzIHNvKQogIGFzLmRhdGEuZnJhbWUoKSB8PiAjIFRyYW5zZm9ybSB0byBhIGRhdGEgZnJhbWUgKGkuZS4sIHJlbW92ZSB0aGUgbWV0cmljX2dyYXBoIGNsYXNzKQogIGRwbHlyOjpzZWxlY3QoZWRnZV9udW1iZXIsIGRpc3RhbmNlX29uX2VkZ2UpCgojIENvbXB1dGUgdGhlIGRpc3RhbmNlIG1hdHJpeApkaXN0bWF0cml4IDwtIGdyYXBoJGNvbXB1dGVfZ2VvZGlzdF9QdEUoUHRFID0gYXV4LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBub3JtYWxpemVkID0gVFJVRSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaW5jbHVkZV92ZXJ0aWNlcyA9IEZBTFNFKQojIERlZmluZSB0aGUgZGlzdGFuY2UgdmVjdG9yCmRpc3RhbmNlID0gc2VxKGZyb20gPSAwLCB0byA9IDEwLCBieSA9IDAuMSkKIyBDb21wdXRlIHRoZSBncm91cHMgZm9yIG9uZSByZXBsaWNhdGUKR1JPVVBTIDwtIGxpc3QoKQpmb3IgKGogaW4gMTpsZW5ndGgoZGlzdGFuY2UpKSB7CiAgR1JPVVBTW1tqXV0gPSBsaXN0KCkKICBmb3IgKGkgaW4gMTpucm93KGF1eCkpIHsKICAgIEdST1VQU1tbal1dW1tpXV0gPC0gd2hpY2goYXMudmVjdG9yKGRpc3RtYXRyaXhbaSwgXSkgPD0gZGlzdGFuY2Vbal0pCiAgfQp9CiMgQ29tcHV0ZSB0aGUgZ3JvdXBzIGZvciBhbGwgcmVwbGljYXRlcywgYmFzZWQgb24gdGhlIGdyb3VwcyBvZiB0aGUgZmlyc3QgcmVwbGljYXRlCm5yb3dZIDwtIGxlbmd0aCh1bmlxdWUoZGF0YSRyZXBsKSkKbmNvbFkgPC0gbnJvdyhmaWx0ZXIoZGF0YSwgcmVwbCA9PSAxKSkKTkVXX0dST1VQUyA8LSBsaXN0KCkKZm9yIChqIGluIDE6bGVuZ3RoKGRpc3RhbmNlKSkgewogIG15X2xpc3QgPC0gR1JPVVBTW1tqXV0KICBhdXhfbGlzdCA8LSBsaXN0KCkKICBmb3IgKGkgaW4gMDoobnJvd1kgLSAxKSkgewogIGFkZGVkX3ZlY3RvcnMgPC0gbGFwcGx5KG15X2xpc3QsIGZ1bmN0aW9uKHZlYykgdmVjICsgaSpuY29sWSkKICBhdXhfbGlzdCA8LSBjKGF1eF9saXN0LCBhZGRlZF92ZWN0b3JzKQogIH0KICBORVdfR1JPVVBTW1tqXV0gPC0gYXV4X2xpc3QKfQoKR1JPVVBTIDwtIE5FV19HUk9VUFMKYGBgCgpCZWxvdyB3ZSBwbG90IHRvIGNoZWNrIHRoYXQgdGhlIGdyb3VwcyBhcmUgY29ycmVjdGx5IGRlZmluZWQuCgpgYGB7ciwgb3V0LndpZHRoID0gIjEwMCUiLCBmaWcuaGVpZ2h0ID0gOCwgZmlnLmNhcCA9IGNhcHRpb25lcigiSWxsdXN0cmF0aW9ucyBvZiBncm91cHMgZm9yIGNyb3NzLXZhbGlkYXRpb24gYmFzZWQgb24gdGhlIGRpc3RhbmNlIG1hdHJpeC4iKX0KcG9pbnRfb2ZfaW50ZXJlc3QgPC0gMyAjIEFueSBudW1iZXIgYmV0d2VlbiAxIGFuZCBucm93KGRhdGEpCnNtYWxsX25laWdoYm9yaG9vZCA8LSBHUk9VUFNbWzIwXV1bW3BvaW50X29mX2ludGVyZXN0XV0KbGFyZ2VfbmVpZ2hib3Job29kIDwtIEdST1VQU1tbNTBdXVtbcG9pbnRfb2ZfaW50ZXJlc3RdXQpwIDwtIGdyYXBoJHBsb3QodmVydGV4X3NpemUgPSAwKSArCiAgZ2VvbV9wb2ludChkYXRhID0gZGF0YSwgYWVzKHggPSAuY29vcmRfeCwgeSA9IC5jb29yZF95KSwgY29sb3IgPSAiZGFya3Zpb2xldCIsIHNpemUgPSAyKSArCiAgZ2VvbV9wb2ludChkYXRhID0gZGF0YVtsYXJnZV9uZWlnaGJvcmhvb2QsIF0sIGFlcyh4ID0gLmNvb3JkX3gsIHkgPSAuY29vcmRfeSksIGNvbG9yID0gImdyZWVuIiwgc2l6ZSA9IDEuNSkgKwogIGdlb21fcG9pbnQoZGF0YSA9IGRhdGFbc21hbGxfbmVpZ2hib3Job29kLCBdLCBhZXMoeCA9IC5jb29yZF94LCB5ID0gLmNvb3JkX3kpLCBjb2xvciA9ICJibHVlIiwgc2l6ZSA9IDEpICsKICBnZW9tX3BvaW50KGRhdGEgPSBkYXRhW3BvaW50X29mX2ludGVyZXN0LCBdLCBhZXMoeCA9IC5jb29yZF94LCB5ID0gLmNvb3JkX3kpLCBjb2xvciA9ICJyZWQiLCBzaXplID0gMC41KSArCiAgZ2d0aXRsZSgiR3JvdXBzIikgKyAKICB0aGVtZV9taW5pbWFsKCkgKyAKICB0aGVtZSh0ZXh0ID0gZWxlbWVudF90ZXh0KGZhbWlseSA9ICJQYWxhdGlubyIpKSArCiAgY29vcmRfZml4ZWQoKQpnZ3Bsb3RseShwKQpgYGAKCkJlbG93IHdlIGRlZmluZSB0aGUgbm9uLXN0YXRpb25hcnkgcGFyYW1ldGVycy4KCmBgYHtyfQojIE5vbi1zdGF0aW9uYXJ5IHBhcmFtZXRlcnMKQi50YXUgPSBjYmluZCgwLCAxLCAwLCBjb3YsIDApCkIua2FwcGEgPSBjYmluZCgwLCAwLCAxLCAwLCBjb3YpCmBgYAoKV2Ugbm93IG1vZGVsIHRoZSBzcGVlZCByZWNvcmRzICR5X2kkIGFzIDEzIGluZGVwZW5kZW50IHJlcGxpY2F0ZXMgc2F0aXNmeWluZwpcYmVnaW57ZXF1YXRpb259ClxsYWJlbHthcHBsaW1vZGVsfQogICAgeV9pfHUoXGNkb3QpXHNpbSBOKFxiZXRhXzAgKyBcYmV0YV8xXHRleHR7bWVhbi5jb3Z9KHNfaSkgKyB1KHNfaSksXHNpZ21hX1xlcHNpbG9uXjIpLFw7aSA9IDEsXGRvdHMsIDMxNCwKXGVuZHtlcXVhdGlvbn0gCndoZXJlICR1KFxjZG90KSQgaXMgYSBHYXVzc2lhbiBwcm9jZXNzIG9uIHRoZSBoaWdod2F5IG5ldHdvcmsuIFdlIGNvbnNpZGVyIHN0YXRpb25hcnkgbW9kZWxzIHdpdGggJFxrYXBwYSxcdGF1PjAkIGFuZCBub24tc3RhdGlvbmFyeSBtb2RlbHMgd2hlcmUgJFx0YXUkIGFuZCAkXGthcHBhJCBhcmUgZ2l2ZW4gYnkKXGJlZ2lue2VxdWF0aW9ufQpcbGFiZWx7bG9ncmVncmVzc2lvbnN9CiAgICBcYmVnaW57YWxpZ25lZH0KICAgIFxsb2coXHRhdShzKSkgJj0gXHRoZXRhXzEgKyBcdGhldGFfMyBcdGV4dHtzdGQuY292fShzKSxcXAogICAgXGxvZyhca2FwcGEocykpICY9IFx0aGV0YV8yICsgXHRoZXRhXzQgXHRleHR7c3RkLmNvdn0ocykuClxlbmR7YWxpZ25lZH0KXGVuZHtlcXVhdGlvbn0KCkZvciBlYWNoIG9mIHRoZSB0d28gY2xhc3NlcyBvZiBtb2RlbHMsIHdlIGNvbnNpZGVyIHRocmVlIGNhc2VzOiB3aGVuICgxKSAkXG51JCBpcyBmaXhlZCB0byAwLjUgb3IgKDIpIDEuNSwgYW5kICgzKSAkXG51JCBpcyBlc3RpbWF0ZWQgZnJvbSB0aGUgZGF0YS4gCgpCZWxvdyBgY292YCByZWZlcnMgdG8gJFx0ZXh0e3N0ZC5jb3Z9KHMpJCBhbmQgYG1lYW5fdmFsdWVgIHJlZmVycyB0byAkXHRleHR7bWVhbi5jb3Z9KHMpJC4KCiMgQ2FzZSAkXG51ID0gMC41JAoKCldlIGZpcnN0IGNvbnNpZGVyIHRoZSBzdGF0aW9uYXJ5IG1vZGVsLgoKCjxkaXYgc3R5bGU9ImNvbG9yOiBibHVlOyI+CioqKioqKioqCioqUHJlc3MgdGhlIFNob3cgYnV0dG9uIGJlbG93IHRvIHJldmVhbCB0aGUgY29kZS4qKgoKKioqKioqKioKPC9kaXY+CgoKYGBge3IsIGNsYXNzLnNvdXJjZSA9ICJmb2xkLWhpZGUifQojIEJ1aWxkIHRoZSBtb2RlbApyc3BkZV9tb2RlbF9zdGF0IDwtIHJzcGRlLm1ldHJpY19ncmFwaChncmFwaCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGFyYW1ldGVyaXphdGlvbiA9ICJzcGRlIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbnUgPSAwLjUpCiMgUHJlcGFyZSB0aGUgZGF0YSBmb3IgZml0dGluZwpkYXRhX3JzcGRlX2JydV9zdGF0IDwtIGdyYXBoX2RhdGFfcnNwZGUocnNwZGVfbW9kZWxfc3RhdCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJlcGwgPSAiLmFsbCIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBicnUgPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVwbF9jb2wgPSAicmVwbCIpCiMgRGVmaW5lIHRoZSBjb21wb25lbnQKY21wX3N0YXQgPC0geSB+IC0xICsKICBJbnRlcmNlcHQoMSkgKwogIG1lYW5fdmFsdWUgKwogIGZpZWxkKGNiaW5kKC5lZGdlX251bWJlciwgLmRpc3RhbmNlX29uX2VkZ2UpLCAKICAgICAgICBtb2RlbCA9IHJzcGRlX21vZGVsX3N0YXQsCiAgICAgICAgcmVwbGljYXRlID0gcmVwbCkKIyBGaXQgdGhlIG1vZGVsCnJzcGRlX2ZpdF9zdGF0IDwtCiAgYnJ1KGNtcF9zdGF0LAogICAgICBkYXRhID0gZGF0YV9yc3BkZV9icnVfc3RhdFtbImRhdGEiXV0sCiAgICAgIGZhbWlseSA9ICJnYXVzc2lhbiIsCiAgICAgIG9wdGlvbnMgPSBsaXN0KHZlcmJvc2UgPSBGQUxTRSkKICApCgpvdXRwdXRfZnJvbV9tb2RlbHMgPC1wcm9jZXNzX21vZGVsX3Jlc3VsdHMocnNwZGVfZml0X3N0YXQsIHJzcGRlX21vZGVsX3N0YXQpCnBhcmFtZXRlcnNfc3RhdGlzdGljcyA8LSBvdXRwdXRfZnJvbV9tb2RlbHMkYWxscGFyYW1zCm1lYW5fYW5kX21vZGVfcGFyYW1zX3N0YXRudTAuNSA8LSBwYXJhbWV0ZXJzX3N0YXRpc3RpY3NbLCBjKDEsNildCnJzcGRlX2ZpdF9zdGF0bnUwLjUgPC0gcnNwZGVfZml0X3N0YXQKIyBTdW1tYXJpemUgdGhlIHJlc3VsdHMKc3VtbWFyeShyc3BkZV9maXRfc3RhdCkKcGFyYW1ldGVyc19zdGF0aXN0aWNzCmBgYAoKCgo8ZGl2IHN0eWxlPSJjb2xvcjogYmx1ZTsiPgoqKioqKioqKgoqKlByZXNzIHRoZSBTaG93IGJ1dHRvbiBiZWxvdyB0byByZXZlYWwgdGhlIGNvZGUuKioKCioqKioqKioqCjwvZGl2PgoKYGBge3IsIGZpZy5jYXAgPSBjYXB0aW9uZXIoIlBvc3RlcmlvciBkaXN0cmlidXRpb25zIG9mIHRoZSBzcGRlIHBhcmFtZXRlcnMuIil9CiMgUGxvdCB0aGUgZXN0aW1hdGVzIG9mIHRoZSBwYXJhbWV0ZXJzCmdncGxvdChvdXRwdXRfZnJvbV9tb2RlbHMkZGZfZm9yX3Bsb3Rfc3BkZSkgKyBnZW9tX2xpbmUoYWVzKHggPSB4LCB5ID0geSkpICsgCiAgZmFjZXRfd3JhcCh+cGFyYW1ldGVyLCBzY2FsZXMgPSAiZnJlZSIpICsgbGFicyh5ID0gIkRlbnNpdHkiKSArCiAgdGhlbWUodGV4dCA9IGVsZW1lbnRfdGV4dChmYW1pbHkgPSAiUGFsYXRpbm8iKSkKYGBgCgo8ZGl2IHN0eWxlPSJjb2xvcjogYmx1ZTsiPgoqKioqKioqKgoqKlByZXNzIHRoZSBTaG93IGJ1dHRvbiBiZWxvdyB0byByZXZlYWwgdGhlIGNvZGUuKioKCioqKioqKioqCjwvZGl2PgoKYGBge3IsIGZpZy5jYXAgPSBjYXB0aW9uZXIoIlBvc3RlcmlvciBkaXN0cmlidXRpb25zIG9mIHRoZSBtYXRlcm4gcGFyYW1ldGVycy4iKX0KZ2dwbG90KG91dHB1dF9mcm9tX21vZGVscyRkZl9mb3JfcGxvdF9tYXRlcm4pICsgZ2VvbV9saW5lKGFlcyh4ID0geCwgeSA9IHkpKSArIAogIGZhY2V0X3dyYXAofnBhcmFtZXRlciwgc2NhbGVzID0gImZyZWUiKSArIGxhYnMoeSA9ICJEZW5zaXR5IikgKyAKICB0aGVtZSh0ZXh0ID0gZWxlbWVudF90ZXh0KGZhbWlseSA9ICJQYWxhdGlubyIpKQpgYGAKCgpXZSBub3cgZml0IHRoZSBub24tc3RhdGlvbmFyeSBtb2RlbC4KCjxkaXYgc3R5bGU9ImNvbG9yOiBibHVlOyI+CioqKioqKioqCioqUHJlc3MgdGhlIFNob3cgYnV0dG9uIGJlbG93IHRvIHJldmVhbCB0aGUgY29kZS4qKgoKKioqKioqKioKPC9kaXY+CgoKYGBge3IsIGNsYXNzLnNvdXJjZSA9ICJmb2xkLWhpZGUifQojIEJ1aWxkIHRoZSBtb2RlbApyc3BkZV9tb2RlbF9ub25zdGF0IDwtIHJzcGRlLm1ldHJpY19ncmFwaChncmFwaCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgQi50YXUgPSBCLnRhdSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgQi5rYXBwYSA9ICBCLmthcHBhLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwYXJhbWV0ZXJpemF0aW9uID0gInNwZGUiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBudSA9IDAuNSkKIyBQcmVwYXJlIHRoZSBkYXRhIGZvciBmaXR0aW5nCmRhdGFfcnNwZGVfYnJ1X25vbnN0YXQgPC0gZ3JhcGhfZGF0YV9yc3BkZShyc3BkZV9tb2RlbF9ub25zdGF0LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVwbCA9ICIuYWxsIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGJydSA9IFRSVUUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICByZXBsX2NvbCA9ICJyZXBsIikKIyBEZWZpbmUgdGhlIGNvbXBvbmVudApjbXBfbm9uc3RhdCA8LSB5IH4gLTEgKwogIEludGVyY2VwdCgxKSArCiAgbWVhbl92YWx1ZSArCiAgZmllbGQoY2JpbmQoLmVkZ2VfbnVtYmVyLCAuZGlzdGFuY2Vfb25fZWRnZSksIAogICAgICAgIG1vZGVsID0gcnNwZGVfbW9kZWxfbm9uc3RhdCwKICAgICAgICByZXBsaWNhdGUgPSByZXBsKQojIEZpdCB0aGUgbW9kZWwKcnNwZGVfZml0X25vbnN0YXQgPC0KICBicnUoY21wX25vbnN0YXQsCiAgICAgIGRhdGEgPSBkYXRhX3JzcGRlX2JydV9ub25zdGF0W1siZGF0YSJdXSwKICAgICAgZmFtaWx5ID0gImdhdXNzaWFuIiwKICAgICAgb3B0aW9ucyA9IGxpc3QodmVyYm9zZSA9IEZBTFNFKQogICkKCm91dHB1dF9mcm9tX21vZGVscyA8LSBwcm9jZXNzX21vZGVsX3Jlc3VsdHMocnNwZGVfZml0X25vbnN0YXQsIHJzcGRlX21vZGVsX25vbnN0YXQpCnBhcmFtZXRlcnNfc3RhdGlzdGljcyA8LSBvdXRwdXRfZnJvbV9tb2RlbHMkYWxscGFyYW1zCm1lYW5fYW5kX21vZGVfcGFyYW1zX25vbnN0YXRudTAuNSA8LSBwYXJhbWV0ZXJzX3N0YXRpc3RpY3NbLCBjKDEsNildCnJzcGRlX2ZpdF9ub25zdGF0bnUwLjUgPC0gcnNwZGVfZml0X25vbnN0YXQKIyBTdW1tYXJpemUgdGhlIHJlc3VsdHMKc3VtbWFyeShyc3BkZV9maXRfbm9uc3RhdCkKcGFyYW1ldGVyc19zdGF0aXN0aWNzCmBgYAoKCgoKPGRpdiBzdHlsZT0iY29sb3I6IGJsdWU7Ij4KKioqKioqKioKKipQcmVzcyB0aGUgU2hvdyBidXR0b24gYmVsb3cgdG8gcmV2ZWFsIHRoZSBjb2RlLioqCgoqKioqKioqKgo8L2Rpdj4KCmBgYHtyLCBmaWcuY2FwID0gY2FwdGlvbmVyKCJQb3N0ZXJpb3IgZGlzdHJpYnV0aW9ucyBvZiB0aGUgc3BkZSBwYXJhbWV0ZXJzLiIpfQojIFBsb3QgdGhlIGVzdGltYXRlcyBvZiB0aGUgcGFyYW1ldGVycwpnZ3Bsb3Qob3V0cHV0X2Zyb21fbW9kZWxzJGRmX2Zvcl9wbG90X3NwZGUpICsgZ2VvbV9saW5lKGFlcyh4ID0geCwgeSA9IHkpKSArIAogIGZhY2V0X3dyYXAofnBhcmFtZXRlciwgc2NhbGVzID0gImZyZWUiKSArIGxhYnMoeSA9ICJEZW5zaXR5IikgKyAKICB0aGVtZSh0ZXh0ID0gZWxlbWVudF90ZXh0KGZhbWlseSA9ICJQYWxhdGlubyIpKQpgYGAKCgo8ZGl2IHN0eWxlPSJjb2xvcjogYmx1ZTsiPgoqKioqKioqKgoqKlByZXNzIHRoZSBTaG93IGJ1dHRvbiBiZWxvdyB0byByZXZlYWwgdGhlIGNvZGUuKioKCioqKioqKioqCjwvZGl2PgoKYGBge3IsIGZpZy5jYXAgPSBjYXB0aW9uZXIoIlBvc3RlcmlvciBkaXN0cmlidXRpb25zIG9mIHRoZSBtYXRlcm4gcGFyYW1ldGVycy4iKX0KZ2dwbG90KG91dHB1dF9mcm9tX21vZGVscyRkZl9mb3JfcGxvdF9tYXRlcm4pICsgZ2VvbV9saW5lKGFlcyh4ID0geCwgeSA9IHkpKSArIAogIGZhY2V0X3dyYXAofnBhcmFtZXRlciwgc2NhbGVzID0gImZyZWUiKSArIGxhYnMoeSA9ICJEZW5zaXR5IikgKyAKICB0aGVtZSh0ZXh0ID0gZWxlbWVudF90ZXh0KGZhbWlseSA9ICJQYWxhdGlubyIpKQpgYGAKCkJlbG93IHdlIGNvbnNpZGVyIHRoZSBwcmVkaWN0aW9uIG9mIHJlcGxpY2F0ZSAxNC4KCjxkaXYgc3R5bGU9ImNvbG9yOiBibHVlOyI+CioqKioqKioqCioqUHJlc3MgdGhlIFNob3cgYnV0dG9uIGJlbG93IHRvIHJldmVhbCB0aGUgY29kZS4qKgoKKioqKioqKioKPC9kaXY+CgpgYGB7ciwgZmlnLndpZHRoID0gMTEuMiwgZmlnLmhlaWdodCA9IDUuNDMsIGNsYXNzLnNvdXJjZSA9ICJmb2xkLWhpZGUiLCBmaWcuY2FwID0gY2FwdGlvbmVyKCJTcGVlZCBvYnNlcnZhdGlvbnMgKGluIG1waCkgb24gdGhlIGhpZ2h3YXkgbmV0d29yayBvZiB0aGUgY2l0eSBvZiBTYW4gSm9zZSBpbiBDYWxpZm9ybmlhLCByZWNvcmRlZCBvbiBBcHJpbCAzLCAyMDE3LiBUaGUgbGVmdCBwYW5lbHMgYXJlIHpvb21lZC1pbiBhcmVhcyBvZiB0aGUgcGFuZWwgdG8gdGhlIHJpZ2h0LiIpfQojIExvYWQgdGhlIG1hcHMgcDEyIGFuZCBwMTMgZnJvbSBwZW1zX3JlcGwxIHZpZ25ldHRlCmxvYWQoaGVyZSgiZGF0YV9maWxlcy9tYXBzX3pvb20xMmFuZDEzZnJvbV9zdGFkaWEuUkRhdGEiKSkKIyBXZSBjb25zaWRlciByZXBsaWNhdGUgMTQKcmVwbGljYXRlLm51bWJlciA8LSAxCiMgUHJlcGFyZSB0aGUgZGF0YSBmb3IgcHJlZGljdGlvbgpkYXRhX3ByZF9saXN0X2Zvcl9yZXAgPC0gZGF0YV9wcmRfbGlzdF9tZXNoCmRhdGFfcHJkX2xpc3RfZm9yX3JlcFtbIm1lYW5fdmFsdWUiXV0gPC0gY292X2Zvcl9tZWFuX3RvX3Bsb3QKZGF0YV9wcmRfbGlzdF9mb3JfcmVwW1sicmVwbCJdXSA8LSByZXAocmVwbGljYXRlLm51bWJlciwgbnJvdyhkYXRhX3ByZF9saXN0X21lc2gpKQojIFBlcmZvcm0gdGhlIHByZWRpY3Rpb24KcmVwbDFfcHJlZF9mdWxsIDwtIHByZWRpY3QocnNwZGVfZml0X25vbnN0YXQsIG5ld2RhdGEgPSBkYXRhX3ByZF9saXN0X2Zvcl9yZXAsIH5JbnRlcmNlcHQgKyBtZWFuX3ZhbHVlICsgZmllbGRfZXZhbChjYmluZCguZWRnZV9udW1iZXIsIC5kaXN0YW5jZV9vbl9lZGdlKSwgcmVwbGljYXRlID0gcmVwbCkpCnJlcGwxX3ByZWRfbWVhbiA8LSByZXBsMV9wcmVkX2Z1bGwkbWVhbgojIEV4dHJhY3QgdGhlIEV1Y2xpZGVhbiBjb29yZGluYXRlcyBvZiB0aGUgbWVzaCBwb2ludHMKeHlwb2ludHMgPC0gZ3JhcGgkbWVzaCRWCiMgRXh0cmFjdCB0aGUgcmFuZ2Ugb2YgdGhlIGNvb3JkaW5hdGVzIAp4X2xlZnQgPC0gcmFuZ2UoeHlwb2ludHNbLDFdKVsxXQp4X3JpZ2h0IDwtIHJhbmdlKHh5cG9pbnRzWywxXSlbMl0KeV9ib3R0b20gPC0gcmFuZ2UoeHlwb2ludHNbLDJdKVsxXQp5X3RvcCA8LSByYW5nZSh4eXBvaW50c1ssMl0pWzJdCiMgRGVmaW5lIGNvb3JkaW5hdGVzIGZvciBzbWFsbCB3aW5kb3dzCmNvb3JkeF9sd3IxIDwtIC0xMjEuODc4CmNvb3JkeF91cHIxIDwtIC0xMjEuODI4CmNvb3JkeV9sd3IxIDwtIDM3LjMxNQpjb29yZHlfdXByMSA8LSAzNy4zNjUKCmNvb3JkeF9sd3IyPC0gLTEyMi4wNzUKY29vcmR4X3VwcjIgPC0gLTEyMi4wMjUKY29vcmR5X2x3cjIgPC0gMzcuMzY1CmNvb3JkeV91cHIyIDwtIDM3LjQxNQojIERlZmluZSB0aGUgY29sb3JzIGZvciB0aGUgd2luZG93cwpsb3dlcl9jb2xvciA8LSAiZGFya3JlZCIgICAjIERhcmsgcHVycGxlCnVwcGVyX2NvbG9yIDwtICJkYXJrYmx1ZSIgICMgWWVsbG93CiMgUGxvdCB0aGUgZmllbGQgb24gdG9wIG9mIHRoZSBtYXAKZjEyIDwtIGdyYXBoJHBsb3RfZnVuY3Rpb24oWCA9IHJlcGwxX3ByZWRfbWVhbiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgdmVydGV4X3NpemUgPSAwLCAKICAgICAgICAgICAgICAgICAgICAgICAgICBwID0gcDEyLAogICAgICAgICAgICAgICAgICAgICAgICAgIGVkZ2Vfd2lkdGggPSAwLjUpICsgCiAgdGhlbWVfbWluaW1hbCgpICsgCiAgdGhlbWUodGV4dCA9IGVsZW1lbnRfdGV4dChmYW1pbHkgPSAiUGFsYXRpbm8iKSwgCiAgICAgICAgYXhpcy50ZXh0ID0gZWxlbWVudF90ZXh0KHNpemUgPSA4KSwKICAgICAgICBsZWdlbmQudGV4dCA9IGVsZW1lbnRfdGV4dChzaXplID0gOCksCiAgICAgICAgcGxvdC5tYXJnaW4gPSB1bml0KC0wLjQqYygxLDAsMSwxKSwgImNtIikKICAgICAgICApICsKICBsYWJzKGNvbG9yID0gIiIsIHggPSAiIiwgeSA9ICIiKSArCiAgeGxpbSh4X2xlZnQsIHhfcmlnaHQpICsgCiAgeWxpbSh5X2JvdHRvbSwgeV90b3ApCiMgUGxvdCB0aGUgZmllbGQgb24gdG9wIG9mIHRoZSBtYXAKZjEzIDwtIGdyYXBoJHBsb3RfZnVuY3Rpb24oWCA9IHJlcGwxX3ByZWRfbWVhbiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgdmVydGV4X3NpemUgPSAwLCAKICAgICAgICAgICAgICAgICAgICAgICAgICBwID0gcDEzLAogICAgICAgICAgICAgICAgICAgICAgICAgIGVkZ2Vfd2lkdGggPSAwLjUpICsgCiAgdGhlbWVfbWluaW1hbCgpICsgCiAgdGhlbWUodGV4dCA9IGVsZW1lbnRfdGV4dChmYW1pbHkgPSAiUGFsYXRpbm8iKSwgCiAgICAgICAgYXhpcy50ZXh0ID0gZWxlbWVudF90ZXh0KHNpemUgPSA4KSwKICAgICAgICBsZWdlbmQudGV4dCA9IGVsZW1lbnRfdGV4dChzaXplID0gOCksCiAgICAgICAgcGxvdC5tYXJnaW4gPSB1bml0KC0wLjQqYygxLDAsMSwxKSwgImNtIikKICAgICAgICApICsKICBsYWJzKGNvbG9yID0gIiIsIHggPSAiIiwgeSA9ICIiKSArCiAgeGxpbSh4X2xlZnQsIHhfcmlnaHQpICsgCiAgeWxpbSh5X2JvdHRvbSwgeV90b3ApCgpnMTIgPC0gZ3JhcGgkcGxvdChkYXRhID0gInkiLCBncm91cCA9IDEsIHZlcnRleF9zaXplID0gMCwgcCA9IGYxMiwgZWRnZV93aWR0aCA9IDAsIGRhdGFfc2l6ZSA9IDEpICsgCiAgbGFicyhjb2xvciA9ICIiLCB4ID0gIiIsIHkgPSAiIikgKyAKICBhbm5vdGF0ZSgic2VnbWVudCIsIHggPSBjb29yZHhfbHdyMSwgeSA9IGNvb3JkeV9sd3IxLCB4ZW5kID0gY29vcmR4X3VwcjEsIHllbmQgPSBjb29yZHlfbHdyMSwgCiAgICAgICAgICAgbGluZXdpZHRoID0gMC40LCBjb2xvciA9IHVwcGVyX2NvbG9yKSArICAjIEJvdHRvbSBsaW5lCiAgYW5ub3RhdGUoInNlZ21lbnQiLCB4ID0gY29vcmR4X2x3cjEsIHkgPSBjb29yZHlfdXByMSwgeGVuZCA9IGNvb3JkeF91cHIxLCB5ZW5kID0gY29vcmR5X3VwcjEsIAogICAgICAgICAgIGxpbmV3aWR0aCA9IDAuNCwgY29sb3IgPSB1cHBlcl9jb2xvcikgKyAgIyBUb3AgbGluZQogIGFubm90YXRlKCJzZWdtZW50IiwgeCA9IGNvb3JkeF9sd3IxLCB5ID0gY29vcmR5X2x3cjEsIHhlbmQgPSBjb29yZHhfbHdyMSwgeWVuZCA9IGNvb3JkeV91cHIxLCAKICAgICAgICAgICBsaW5ld2lkdGggPSAwLjQsIGNvbG9yID0gdXBwZXJfY29sb3IpICsgICMgTGVmdCBsaW5lCiAgYW5ub3RhdGUoInNlZ21lbnQiLCB4ID0gY29vcmR4X3VwcjEsIHkgPSBjb29yZHlfbHdyMSwgeGVuZCA9IGNvb3JkeF91cHIxLCB5ZW5kID0gY29vcmR5X3VwcjEsIAogICAgICAgICAgIGxpbmV3aWR0aCA9IDAuNCwgY29sb3IgPSB1cHBlcl9jb2xvcikgKyAgIyBSaWdodCBsaW5lCiAgYW5ub3RhdGUoInNlZ21lbnQiLCB4ID0gY29vcmR4X2x3cjIsIHkgPSBjb29yZHlfbHdyMiwgeGVuZCA9IGNvb3JkeF91cHIyLCB5ZW5kID0gY29vcmR5X2x3cjIsIAogICAgICAgICAgIGxpbmV3aWR0aCA9IDAuNCwgY29sb3IgPSBsb3dlcl9jb2xvcikgKyAgCiAgYW5ub3RhdGUoInNlZ21lbnQiLCB4ID0gY29vcmR4X2x3cjIsIHkgPSBjb29yZHlfdXByMiwgeGVuZCA9IGNvb3JkeF91cHIyLCB5ZW5kID0gY29vcmR5X3VwcjIsIAogICAgICAgICAgIGxpbmV3aWR0aCA9IDAuNCwgY29sb3IgPSBsb3dlcl9jb2xvcikgKyAgCiAgYW5ub3RhdGUoInNlZ21lbnQiLCB4ID0gY29vcmR4X2x3cjIsIHkgPSBjb29yZHlfbHdyMiwgeGVuZCA9IGNvb3JkeF9sd3IyLCB5ZW5kID0gY29vcmR5X3VwcjIsIAogICAgICAgICAgIGxpbmV3aWR0aCA9IDAuNCwgY29sb3IgPSBsb3dlcl9jb2xvcikgKyAgCiAgYW5ub3RhdGUoInNlZ21lbnQiLCB4ID0gY29vcmR4X3VwcjIsIHkgPSBjb29yZHlfbHdyMiwgeGVuZCA9IGNvb3JkeF91cHIyLCB5ZW5kID0gY29vcmR5X3VwcjIsIAogICAgICAgICAgIGxpbmV3aWR0aCA9IDAuNCwgY29sb3IgPSBsb3dlcl9jb2xvcikKZzEzIDwtIGdyYXBoJHBsb3QoZGF0YSA9ICJ5IiwgZ3JvdXAgPSAxLCB2ZXJ0ZXhfc2l6ZSA9IDAsIHAgPSBmMTMsIGVkZ2Vfd2lkdGggPSAwLCBkYXRhX3NpemUgPSAxKSArIAogIGxhYnMoY29sb3IgPSAiIiwgeCA9ICIiLCB5ID0gIiIpICsgCiAgYW5ub3RhdGUoInNlZ21lbnQiLCB4ID0gY29vcmR4X2x3cjEsIHkgPSBjb29yZHlfbHdyMSwgeGVuZCA9IGNvb3JkeF91cHIxLCB5ZW5kID0gY29vcmR5X2x3cjEsIAogICAgICAgICAgIGxpbmV3aWR0aCA9IDAuNCwgY29sb3IgPSB1cHBlcl9jb2xvcikgKyAgIyBCb3R0b20gbGluZQogIGFubm90YXRlKCJzZWdtZW50IiwgeCA9IGNvb3JkeF9sd3IxLCB5ID0gY29vcmR5X3VwcjEsIHhlbmQgPSBjb29yZHhfdXByMSwgeWVuZCA9IGNvb3JkeV91cHIxLCAKICAgICAgICAgICBsaW5ld2lkdGggPSAwLjQsIGNvbG9yID0gdXBwZXJfY29sb3IpICsgICMgVG9wIGxpbmUKICBhbm5vdGF0ZSgic2VnbWVudCIsIHggPSBjb29yZHhfbHdyMSwgeSA9IGNvb3JkeV9sd3IxLCB4ZW5kID0gY29vcmR4X2x3cjEsIHllbmQgPSBjb29yZHlfdXByMSwgCiAgICAgICAgICAgbGluZXdpZHRoID0gMC40LCBjb2xvciA9IHVwcGVyX2NvbG9yKSArICAjIExlZnQgbGluZQogIGFubm90YXRlKCJzZWdtZW50IiwgeCA9IGNvb3JkeF91cHIxLCB5ID0gY29vcmR5X2x3cjEsIHhlbmQgPSBjb29yZHhfdXByMSwgeWVuZCA9IGNvb3JkeV91cHIxLCAKICAgICAgICAgICBsaW5ld2lkdGggPSAwLjQsIGNvbG9yID0gdXBwZXJfY29sb3IpICsgICMgUmlnaHQgbGluZQogIGFubm90YXRlKCJzZWdtZW50IiwgeCA9IGNvb3JkeF9sd3IyLCB5ID0gY29vcmR5X2x3cjIsIHhlbmQgPSBjb29yZHhfdXByMiwgeWVuZCA9IGNvb3JkeV9sd3IyLCAKICAgICAgICAgICBsaW5ld2lkdGggPSAwLjQsIGNvbG9yID0gbG93ZXJfY29sb3IpICsgIAogIGFubm90YXRlKCJzZWdtZW50IiwgeCA9IGNvb3JkeF9sd3IyLCB5ID0gY29vcmR5X3VwcjIsIHhlbmQgPSBjb29yZHhfdXByMiwgeWVuZCA9IGNvb3JkeV91cHIyLCAKICAgICAgICAgICBsaW5ld2lkdGggPSAwLjQsIGNvbG9yID0gbG93ZXJfY29sb3IpICsgIAogIGFubm90YXRlKCJzZWdtZW50IiwgeCA9IGNvb3JkeF9sd3IyLCB5ID0gY29vcmR5X2x3cjIsIHhlbmQgPSBjb29yZHhfbHdyMiwgeWVuZCA9IGNvb3JkeV91cHIyLCAKICAgICAgICAgICBsaW5ld2lkdGggPSAwLjQsIGNvbG9yID0gbG93ZXJfY29sb3IpICsgIAogIGFubm90YXRlKCJzZWdtZW50IiwgeCA9IGNvb3JkeF91cHIyLCB5ID0gY29vcmR5X2x3cjIsIHhlbmQgPSBjb29yZHhfdXByMiwgeWVuZCA9IGNvb3JkeV91cHIyLCAKICAgICAgICAgICBsaW5ld2lkdGggPSAwLjQsIGNvbG9yID0gbG93ZXJfY29sb3IpIAoKcjEgPC0gZzEzICsgeGxpbShjb29yZHhfbHdyMSwgY29vcmR4X3VwcjEpICsgCiAgICAgICAgICAgICAgICAgICAgeWxpbShjb29yZHlfbHdyMSwgY29vcmR5X3VwcjEpICsgCiAgdGhlbWUobGVnZW5kLnBvc2l0aW9uID0gIm5vbmUiLCAKICAgICAgICBwbG90Lm1hcmdpbiA9IHVuaXQoLTAuMipjKDEsMSwxLDEpLCAiY20iKSkKCnIyIDwtIGcxMyArIHhsaW0oY29vcmR4X2x3cjIsIGNvb3JkeF91cHIyKSArIAogICAgICAgICAgICAgICAgICAgIHlsaW0oY29vcmR5X2x3cjIsIGNvb3JkeV91cHIyKSArIAogIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIiwgCiAgICAgICAgcGxvdC5tYXJnaW4gPSB1bml0KC0wLjIqYygxLDEsMSwxKSwgImNtIikpCgojIEFycmFuZ2UgcDIgYW5kIHAzIGhvcml6b250YWxseQpsZWZ0X2NvbCA8LSBwbG90X2dyaWQocjIsIHIxLCBsYWJlbHMgPSBOVUxMLCBuY29sID0gMSwgbnJvdyA9IDIsIHJlbF9oZWlnaHRzID0gYygxLDEpKQoKIyBDb21iaW5lIHRoZSB0b3Agcm93IHdpdGggcDEgaW4gYSBncmlkCmNvbWJpbmVkX3Bsb3QgPC0gcGxvdF9ncmlkKGxlZnRfY29sLCBnMTIsIGxhYmVscyA9IE5VTEwsIG5jb2wgPSAyLCByZWxfd2lkdGhzID0gYygxLDIpKSAKZmluYWxfcGxvdCA8LSBhbm5vdGF0ZV9maWd1cmUoY29tYmluZWRfcGxvdCwgbGVmdCA9IHRleHRHcm9iKCJMYXRpdHVkZSIsIHJvdCA9IDkwLCB2anVzdCA9IDEsIGdwID0gZ3BhcihjZXggPSAwLjgpKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYm90dG9tID0gdGV4dEdyb2IoIkxvbmdpdHVkZSIsIHZqdXN0ID0gLTAuNSwgZ3AgPSBncGFyKGNleCA9IDAuOCkpKQpnZ3NhdmUoaGVyZSgiZGF0YV9maWxlcy9yZXBsaWNhdGUxNF8zX3dpdGhfcHJlZGljdGlvbi5wbmciKSwgd2lkdGggPSAxMS4yLCBoZWlnaHQgPSA1LjQzLCBwbG90ID0gZmluYWxfcGxvdCwgZHBpID0gNTAwKQojIFByaW50IHRoZSBjb21iaW5lZCBwbG90CnByaW50KGZpbmFsX3Bsb3QpCmBgYAoKIyBDYXNlICRcbnUgPSAxLjUkCgoKV2UgZmlyc3QgY29uc2lkZXIgdGhlIHN0YXRpb25hcnkgbW9kZWwuCgo8ZGl2IHN0eWxlPSJjb2xvcjogYmx1ZTsiPgoqKioqKioqKgoqKlByZXNzIHRoZSBTaG93IGJ1dHRvbiBiZWxvdyB0byByZXZlYWwgdGhlIGNvZGUuKioKCioqKioqKioqCjwvZGl2PgoKCgpgYGB7ciwgY2xhc3Muc291cmNlID0gImZvbGQtaGlkZSJ9CiMgQnVpbGQgdGhlIG1vZGVsCnJzcGRlX21vZGVsX3N0YXQgPC0gcnNwZGUubWV0cmljX2dyYXBoKGdyYXBoLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwYXJhbWV0ZXJpemF0aW9uID0gInNwZGUiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBudSA9IDEuNSkKIyBQcmVwYXJlIHRoZSBkYXRhIGZvciBmaXR0aW5nCmRhdGFfcnNwZGVfYnJ1X3N0YXQgPC0gZ3JhcGhfZGF0YV9yc3BkZShyc3BkZV9tb2RlbF9zdGF0LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVwbCA9ICIuYWxsIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGJydSA9IFRSVUUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICByZXBsX2NvbCA9ICJyZXBsIikKIyBEZWZpbmUgdGhlIGNvbXBvbmVudApjbXBfc3RhdCA8LSB5IH4gLTEgKwogIEludGVyY2VwdCgxKSArCiAgbWVhbl92YWx1ZSArCiAgZmllbGQoY2JpbmQoLmVkZ2VfbnVtYmVyLCAuZGlzdGFuY2Vfb25fZWRnZSksIAogICAgICAgIG1vZGVsID0gcnNwZGVfbW9kZWxfc3RhdCwKICAgICAgICByZXBsaWNhdGUgPSByZXBsKQojIEZpdCB0aGUgbW9kZWwKcnNwZGVfZml0X3N0YXQgPC0KICBicnUoY21wX3N0YXQsCiAgICAgIGRhdGEgPSBkYXRhX3JzcGRlX2JydV9zdGF0W1siZGF0YSJdXSwKICAgICAgZmFtaWx5ID0gImdhdXNzaWFuIiwKICAgICAgb3B0aW9ucyA9IGxpc3QodmVyYm9zZSA9IEZBTFNFKQogICkKCm91dHB1dF9mcm9tX21vZGVscyA8LXByb2Nlc3NfbW9kZWxfcmVzdWx0cyhyc3BkZV9maXRfc3RhdCwgcnNwZGVfbW9kZWxfc3RhdCkKcGFyYW1ldGVyc19zdGF0aXN0aWNzIDwtIG91dHB1dF9mcm9tX21vZGVscyRhbGxwYXJhbXMKbWVhbl9hbmRfbW9kZV9wYXJhbXNfc3RhdG51MS41IDwtIHBhcmFtZXRlcnNfc3RhdGlzdGljc1ssIGMoMSw2KV0KcnNwZGVfZml0X3N0YXRudTEuNSA8LSByc3BkZV9maXRfc3RhdAojIFN1bW1hcml6ZSB0aGUgcmVzdWx0cwpzdW1tYXJ5KHJzcGRlX2ZpdF9zdGF0KQpwYXJhbWV0ZXJzX3N0YXRpc3RpY3MKYGBgCgoKCjxkaXYgc3R5bGU9ImNvbG9yOiBibHVlOyI+CioqKioqKioqCioqUHJlc3MgdGhlIFNob3cgYnV0dG9uIGJlbG93IHRvIHJldmVhbCB0aGUgY29kZS4qKgoKKioqKioqKioKPC9kaXY+CgpgYGB7ciwgZmlnLmNhcCA9IGNhcHRpb25lcigiUG9zdGVyaW9yIGRpc3RyaWJ1dGlvbnMgb2YgdGhlIHNwZGUgcGFyYW1ldGVycy4iKX0KIyBQbG90IHRoZSBlc3RpbWF0ZXMgb2YgdGhlIHBhcmFtZXRlcnMKZ2dwbG90KG91dHB1dF9mcm9tX21vZGVscyRkZl9mb3JfcGxvdF9zcGRlKSArIGdlb21fbGluZShhZXMoeCA9IHgsIHkgPSB5KSkgKyAKICBmYWNldF93cmFwKH5wYXJhbWV0ZXIsIHNjYWxlcyA9ICJmcmVlIikgKyBsYWJzKHkgPSAiRGVuc2l0eSIpICsgCiAgdGhlbWUodGV4dCA9IGVsZW1lbnRfdGV4dChmYW1pbHkgPSAiUGFsYXRpbm8iKSkKYGBgCgo8ZGl2IHN0eWxlPSJjb2xvcjogYmx1ZTsiPgoqKioqKioqKgoqKlByZXNzIHRoZSBTaG93IGJ1dHRvbiBiZWxvdyB0byByZXZlYWwgdGhlIGNvZGUuKioKCioqKioqKioqCjwvZGl2PgoKYGBge3IsIGZpZy5jYXAgPSBjYXB0aW9uZXIoIlBvc3RlcmlvciBkaXN0cmlidXRpb25zIG9mIHRoZSBtYXRlcm4gcGFyYW1ldGVycy4iKX0KZ2dwbG90KG91dHB1dF9mcm9tX21vZGVscyRkZl9mb3JfcGxvdF9tYXRlcm4pICsgZ2VvbV9saW5lKGFlcyh4ID0geCwgeSA9IHkpKSArIAogIGZhY2V0X3dyYXAofnBhcmFtZXRlciwgc2NhbGVzID0gImZyZWUiKSArIGxhYnMoeSA9ICJEZW5zaXR5IikgKyAKICB0aGVtZSh0ZXh0ID0gZWxlbWVudF90ZXh0KGZhbWlseSA9ICJQYWxhdGlubyIpKQpgYGAKCgpXZSBub3cgZml0IHRoZSBub24tc3RhdGlvbmFyeSBtb2RlbC4KCjxkaXYgc3R5bGU9ImNvbG9yOiBibHVlOyI+CioqKioqKioqCioqUHJlc3MgdGhlIFNob3cgYnV0dG9uIGJlbG93IHRvIHJldmVhbCB0aGUgY29kZS4qKgoKKioqKioqKioKPC9kaXY+CgoKCmBgYHtyLCBjbGFzcy5zb3VyY2UgPSAiZm9sZC1oaWRlIn0KIyBCdWlsZCB0aGUgbW9kZWwKcnNwZGVfbW9kZWxfbm9uc3RhdCA8LSByc3BkZS5tZXRyaWNfZ3JhcGgoZ3JhcGgsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIEIudGF1ID0gQi50YXUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIEIua2FwcGEgPSAgQi5rYXBwYSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGFyYW1ldGVyaXphdGlvbiA9ICJzcGRlIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbnUgPSAxLjUpCiMgUHJlcGFyZSB0aGUgZGF0YSBmb3IgZml0dGluZwpkYXRhX3JzcGRlX2JydV9ub25zdGF0IDwtIGdyYXBoX2RhdGFfcnNwZGUocnNwZGVfbW9kZWxfbm9uc3RhdCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJlcGwgPSAiLmFsbCIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBicnUgPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVwbF9jb2wgPSAicmVwbCIpCiMgRGVmaW5lIHRoZSBjb21wb25lbnQKY21wX25vbnN0YXQgPC0geSB+IC0xICsKICBJbnRlcmNlcHQoMSkgKwogIG1lYW5fdmFsdWUgKwogIGZpZWxkKGNiaW5kKC5lZGdlX251bWJlciwgLmRpc3RhbmNlX29uX2VkZ2UpLCAKICAgICAgICBtb2RlbCA9IHJzcGRlX21vZGVsX25vbnN0YXQsCiAgICAgICAgcmVwbGljYXRlID0gcmVwbCkKIyBGaXQgdGhlIG1vZGVsCnJzcGRlX2ZpdF9ub25zdGF0IDwtCiAgYnJ1KGNtcF9ub25zdGF0LAogICAgICBkYXRhID0gZGF0YV9yc3BkZV9icnVfbm9uc3RhdFtbImRhdGEiXV0sCiAgICAgIGZhbWlseSA9ICJnYXVzc2lhbiIsCiAgICAgIG9wdGlvbnMgPSBsaXN0KHZlcmJvc2UgPSBGQUxTRSkKICApCgpvdXRwdXRfZnJvbV9tb2RlbHMgPC0gcHJvY2Vzc19tb2RlbF9yZXN1bHRzKHJzcGRlX2ZpdF9ub25zdGF0LCByc3BkZV9tb2RlbF9ub25zdGF0KQpwYXJhbWV0ZXJzX3N0YXRpc3RpY3MgPC0gb3V0cHV0X2Zyb21fbW9kZWxzJGFsbHBhcmFtcwptZWFuX2FuZF9tb2RlX3BhcmFtc19ub25zdGF0bnUxLjUgPC0gcGFyYW1ldGVyc19zdGF0aXN0aWNzWywgYygxLDYpXQpyc3BkZV9maXRfbm9uc3RhdG51MS41IDwtIHJzcGRlX2ZpdF9ub25zdGF0CiMgU3VtbWFyaXplIHRoZSByZXN1bHRzCnN1bW1hcnkocnNwZGVfZml0X25vbnN0YXQpCnBhcmFtZXRlcnNfc3RhdGlzdGljcwpgYGAKCgoKPGRpdiBzdHlsZT0iY29sb3I6IGJsdWU7Ij4KKioqKioqKioKKipQcmVzcyB0aGUgU2hvdyBidXR0b24gYmVsb3cgdG8gcmV2ZWFsIHRoZSBjb2RlLioqCgoqKioqKioqKgo8L2Rpdj4KCmBgYHtyLCBmaWcuY2FwID0gY2FwdGlvbmVyKCJQb3N0ZXJpb3IgZGlzdHJpYnV0aW9ucyBvZiB0aGUgc3BkZSBwYXJhbWV0ZXJzLiIpfQojIFBsb3QgdGhlIGVzdGltYXRlcyBvZiB0aGUgcGFyYW1ldGVycwpnZ3Bsb3Qob3V0cHV0X2Zyb21fbW9kZWxzJGRmX2Zvcl9wbG90X3NwZGUpICsgZ2VvbV9saW5lKGFlcyh4ID0geCwgeSA9IHkpKSArIAogIGZhY2V0X3dyYXAofnBhcmFtZXRlciwgc2NhbGVzID0gImZyZWUiKSArIGxhYnMoeSA9ICJEZW5zaXR5IikgKyAKICB0aGVtZSh0ZXh0ID0gZWxlbWVudF90ZXh0KGZhbWlseSA9ICJQYWxhdGlubyIpKQpgYGAKCjxkaXYgc3R5bGU9ImNvbG9yOiBibHVlOyI+CioqKioqKioqCioqUHJlc3MgdGhlIFNob3cgYnV0dG9uIGJlbG93IHRvIHJldmVhbCB0aGUgY29kZS4qKgoKKioqKioqKioKPC9kaXY+CgpgYGB7ciwgZmlnLmNhcCA9IGNhcHRpb25lcigiUG9zdGVyaW9yIGRpc3RyaWJ1dGlvbnMgb2YgdGhlIG1hdGVybiBwYXJhbWV0ZXJzLiIpfQpnZ3Bsb3Qob3V0cHV0X2Zyb21fbW9kZWxzJGRmX2Zvcl9wbG90X21hdGVybikgKyBnZW9tX2xpbmUoYWVzKHggPSB4LCB5ID0geSkpICsgCiAgZmFjZXRfd3JhcCh+cGFyYW1ldGVyLCBzY2FsZXMgPSAiZnJlZSIpICsgbGFicyh5ID0gIkRlbnNpdHkiKSArIAogIHRoZW1lKHRleHQgPSBlbGVtZW50X3RleHQoZmFtaWx5ID0gIlBhbGF0aW5vIikpCmBgYAoKIyBDYXNlICRcbnUkIGVzdGltYXRlZAoKV2UgZmlyc3QgY29uc2lkZXIgdGhlIHN0YXRpb25hcnkgbW9kZWwuCgo8ZGl2IHN0eWxlPSJjb2xvcjogYmx1ZTsiPgoqKioqKioqKgoqKlByZXNzIHRoZSBTaG93IGJ1dHRvbiBiZWxvdyB0byByZXZlYWwgdGhlIGNvZGUuKioKCioqKioqKioqCjwvZGl2PgoKCgoKYGBge3IsIGNsYXNzLnNvdXJjZSA9ICJmb2xkLWhpZGUifQojIEJ1aWxkIHRoZSBtb2RlbApyc3BkZV9tb2RlbF9zdGF0IDwtIHJzcGRlLm1ldHJpY19ncmFwaChncmFwaCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGFyYW1ldGVyaXphdGlvbiA9ICJzcGRlIikKIyBQcmVwYXJlIHRoZSBkYXRhIGZvciBmaXR0aW5nCmRhdGFfcnNwZGVfYnJ1X3N0YXQgPC0gZ3JhcGhfZGF0YV9yc3BkZShyc3BkZV9tb2RlbF9zdGF0LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVwbCA9ICIuYWxsIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGJydSA9IFRSVUUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICByZXBsX2NvbCA9ICJyZXBsIikKIyBEZWZpbmUgdGhlIGNvbXBvbmVudApjbXBfc3RhdCA8LSB5IH4gLTEgKwogIEludGVyY2VwdCgxKSArCiAgbWVhbl92YWx1ZSArCiAgZmllbGQoY2JpbmQoLmVkZ2VfbnVtYmVyLCAuZGlzdGFuY2Vfb25fZWRnZSksIAogICAgICAgIG1vZGVsID0gcnNwZGVfbW9kZWxfc3RhdCwKICAgICAgICByZXBsaWNhdGUgPSByZXBsKQojIEZpdCB0aGUgbW9kZWwKcnNwZGVfZml0X3N0YXQgPC0KICBicnUoY21wX3N0YXQsCiAgICAgIGRhdGEgPSBkYXRhX3JzcGRlX2JydV9zdGF0W1siZGF0YSJdXSwKICAgICAgZmFtaWx5ID0gImdhdXNzaWFuIiwKICAgICAgb3B0aW9ucyA9IGxpc3QodmVyYm9zZSA9IEZBTFNFKQogICkKCm91dHB1dF9mcm9tX21vZGVscyA8LXByb2Nlc3NfbW9kZWxfcmVzdWx0cyhyc3BkZV9maXRfc3RhdCwgcnNwZGVfbW9kZWxfc3RhdCkKcGFyYW1ldGVyc19zdGF0aXN0aWNzIDwtIG91dHB1dF9mcm9tX21vZGVscyRhbGxwYXJhbXMKbWVhbl9hbmRfbW9kZV9wYXJhbXNfc3RhdG51ZXN0IDwtIHBhcmFtZXRlcnNfc3RhdGlzdGljc1ssIGMoMSw2KV0KcnNwZGVfZml0X3N0YXRudWVzdCA8LSByc3BkZV9maXRfc3RhdAojIFN1bW1hcml6ZSB0aGUgcmVzdWx0cwpzdW1tYXJ5KHJzcGRlX2ZpdF9zdGF0KQpwYXJhbWV0ZXJzX3N0YXRpc3RpY3MKYGBgCgoKCgo8ZGl2IHN0eWxlPSJjb2xvcjogYmx1ZTsiPgoqKioqKioqKgoqKlByZXNzIHRoZSBTaG93IGJ1dHRvbiBiZWxvdyB0byByZXZlYWwgdGhlIGNvZGUuKioKCioqKioqKioqCjwvZGl2PgoKYGBge3IsIGZpZy5jYXAgPSBjYXB0aW9uZXIoIlBvc3RlcmlvciBkaXN0cmlidXRpb25zIG9mIHRoZSBzcGRlIHBhcmFtZXRlcnMuIil9CiMgUGxvdCB0aGUgZXN0aW1hdGVzIG9mIHRoZSBwYXJhbWV0ZXJzCmdncGxvdChvdXRwdXRfZnJvbV9tb2RlbHMkZGZfZm9yX3Bsb3Rfc3BkZSkgKyBnZW9tX2xpbmUoYWVzKHggPSB4LCB5ID0geSkpICsgCiAgZmFjZXRfd3JhcCh+cGFyYW1ldGVyLCBzY2FsZXMgPSAiZnJlZSIpICsgbGFicyh5ID0gIkRlbnNpdHkiKSArIAogIHRoZW1lKHRleHQgPSBlbGVtZW50X3RleHQoZmFtaWx5ID0gIlBhbGF0aW5vIikpCmBgYAoKPGRpdiBzdHlsZT0iY29sb3I6IGJsdWU7Ij4KKioqKioqKioKKipQcmVzcyB0aGUgU2hvdyBidXR0b24gYmVsb3cgdG8gcmV2ZWFsIHRoZSBjb2RlLioqCgoqKioqKioqKgo8L2Rpdj4KCmBgYHtyLCBmaWcuY2FwID0gY2FwdGlvbmVyKCJQb3N0ZXJpb3IgZGlzdHJpYnV0aW9ucyBvZiB0aGUgbWF0ZXJuIHBhcmFtZXRlcnMuIil9CmdncGxvdChvdXRwdXRfZnJvbV9tb2RlbHMkZGZfZm9yX3Bsb3RfbWF0ZXJuKSArIGdlb21fbGluZShhZXMoeCA9IHgsIHkgPSB5KSkgKyAKICBmYWNldF93cmFwKH5wYXJhbWV0ZXIsIHNjYWxlcyA9ICJmcmVlIikgKyBsYWJzKHkgPSAiRGVuc2l0eSIpICsgCiAgdGhlbWUodGV4dCA9IGVsZW1lbnRfdGV4dChmYW1pbHkgPSAiUGFsYXRpbm8iKSkKYGBgCgoKV2Ugbm93IGZpdCB0aGUgbm9uLXN0YXRpb25hcnkgbW9kZWwuCgo8ZGl2IHN0eWxlPSJjb2xvcjogYmx1ZTsiPgoqKioqKioqKgoqKlByZXNzIHRoZSBTaG93IGJ1dHRvbiBiZWxvdyB0byByZXZlYWwgdGhlIGNvZGUuKioKCioqKioqKioqCjwvZGl2PgoKCgpgYGB7ciwgY2xhc3Muc291cmNlID0gImZvbGQtaGlkZSJ9CiMgQnVpbGQgdGhlIG1vZGVsCnJzcGRlX21vZGVsX25vbnN0YXQgPC0gcnNwZGUubWV0cmljX2dyYXBoKGdyYXBoLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBCLnRhdSA9IEIudGF1LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBCLmthcHBhID0gIEIua2FwcGEsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHBhcmFtZXRlcml6YXRpb24gPSAic3BkZSIpCiMgUHJlcGFyZSB0aGUgZGF0YSBmb3IgZml0dGluZwpkYXRhX3JzcGRlX2JydV9ub25zdGF0IDwtIGdyYXBoX2RhdGFfcnNwZGUocnNwZGVfbW9kZWxfbm9uc3RhdCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJlcGwgPSAiLmFsbCIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBicnUgPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVwbF9jb2wgPSAicmVwbCIpCiMgRGVmaW5lIHRoZSBjb21wb25lbnQKY21wX25vbnN0YXQgPC0geSB+IC0xICsKICBJbnRlcmNlcHQoMSkgKwogIG1lYW5fdmFsdWUgKwogIGZpZWxkKGNiaW5kKC5lZGdlX251bWJlciwgLmRpc3RhbmNlX29uX2VkZ2UpLCAKICAgICAgICBtb2RlbCA9IHJzcGRlX21vZGVsX25vbnN0YXQsCiAgICAgICAgcmVwbGljYXRlID0gcmVwbCkKIyBGaXQgdGhlIG1vZGVsCnJzcGRlX2ZpdF9ub25zdGF0IDwtCiAgYnJ1KGNtcF9ub25zdGF0LAogICAgICBkYXRhID0gZGF0YV9yc3BkZV9icnVfbm9uc3RhdFtbImRhdGEiXV0sCiAgICAgIGZhbWlseSA9ICJnYXVzc2lhbiIsCiAgICAgIG9wdGlvbnMgPSBsaXN0KHZlcmJvc2UgPSBGQUxTRSkKICApCgpvdXRwdXRfZnJvbV9tb2RlbHMgPC0gcHJvY2Vzc19tb2RlbF9yZXN1bHRzKHJzcGRlX2ZpdF9ub25zdGF0LCByc3BkZV9tb2RlbF9ub25zdGF0KQpwYXJhbWV0ZXJzX3N0YXRpc3RpY3MgPC0gb3V0cHV0X2Zyb21fbW9kZWxzJGFsbHBhcmFtcwptZWFuX2FuZF9tb2RlX3BhcmFtc19ub25zdGF0bnVlc3QgPC0gcGFyYW1ldGVyc19zdGF0aXN0aWNzWywgYygxLDYpXQpyc3BkZV9maXRfbm9uc3RhdG51ZXN0IDwtIHJzcGRlX2ZpdF9ub25zdGF0CiMgU3VtbWFyaXplIHRoZSByZXN1bHRzCnN1bW1hcnkocnNwZGVfZml0X25vbnN0YXQpCnBhcmFtZXRlcnNfc3RhdGlzdGljcwpgYGAKCgoKCjxkaXYgc3R5bGU9ImNvbG9yOiBibHVlOyI+CioqKioqKioqCioqUHJlc3MgdGhlIFNob3cgYnV0dG9uIGJlbG93IHRvIHJldmVhbCB0aGUgY29kZS4qKgoKKioqKioqKioKPC9kaXY+CgpgYGB7ciwgZmlnLmNhcCA9IGNhcHRpb25lcigiUG9zdGVyaW9yIGRpc3RyaWJ1dGlvbnMgb2YgdGhlIHNwZGUgcGFyYW1ldGVycy4iKX0KIyBQbG90IHRoZSBlc3RpbWF0ZXMgb2YgdGhlIHBhcmFtZXRlcnMKZ2dwbG90KG91dHB1dF9mcm9tX21vZGVscyRkZl9mb3JfcGxvdF9zcGRlKSArIGdlb21fbGluZShhZXMoeCA9IHgsIHkgPSB5KSkgKyAKICBmYWNldF93cmFwKH5wYXJhbWV0ZXIsIHNjYWxlcyA9ICJmcmVlIikgKyBsYWJzKHkgPSAiRGVuc2l0eSIpICsgCiAgdGhlbWUodGV4dCA9IGVsZW1lbnRfdGV4dChmYW1pbHkgPSAiUGFsYXRpbm8iKSkKYGBgCgo8ZGl2IHN0eWxlPSJjb2xvcjogYmx1ZTsiPgoqKioqKioqKgoqKlByZXNzIHRoZSBTaG93IGJ1dHRvbiBiZWxvdyB0byByZXZlYWwgdGhlIGNvZGUuKioKCioqKioqKioqCjwvZGl2PgoKYGBge3IsIGZpZy5jYXAgPSBjYXB0aW9uZXIoIlBvc3RlcmlvciBkaXN0cmlidXRpb25zIG9mIHRoZSBtYXRlcm4gcGFyYW1ldGVycy4iKX0KZ2dwbG90KG91dHB1dF9mcm9tX21vZGVscyRkZl9mb3JfcGxvdF9tYXRlcm4pICsgZ2VvbV9saW5lKGFlcyh4ID0geCwgeSA9IHkpKSArIAogIGZhY2V0X3dyYXAofnBhcmFtZXRlciwgc2NhbGVzID0gImZyZWUiKSArIGxhYnMoeSA9ICJEZW5zaXR5IikgKyAKICB0aGVtZSh0ZXh0ID0gZWxlbWVudF90ZXh0KGZhbWlseSA9ICJQYWxhdGlubyIpKQpgYGAKCkJlbG93IHdlIHBlcmZvcm0gbGVhdmUtZ3JvdXAtb3V0IHBzZXVkbyBjcm9zcy12YWxpZGF0aW9uIFtAbGl1MjAyMmxlYXZlXSBmb2xsb3dpbmcgdGhlIHN0cmF0ZWd5IGZyb20gW0B4aW9uZzIwMjJjb3ZhcmlhbmNlXS4KCjxkaXYgc3R5bGU9ImNvbG9yOiBibHVlOyI+CioqKioqKioqCioqUHJlc3MgdGhlIFNob3cgYnV0dG9uIGJlbG93IHRvIHJldmVhbCB0aGUgY29kZS4qKgoKKioqKioqKioKPC9kaXY+CgpgYGB7ciwgY2xhc3Muc291cmNlID0gImZvbGQtaGlkZSIsIGNvbGxhcHNlID0gVFJVRX0KbXNlLnN0YXRudTAuNSA8LSBtc2Uubm9uc3RhdG51MC41IDwtIGxzLnN0YXRudTAuNSA8LSBscy5ub25zdGF0bnUwLjUgPC0gcmVwKDAsbGVuZ3RoKGRpc3RhbmNlKSkKbXNlLnN0YXRudTEuNSA8LSBtc2Uubm9uc3RhdG51MS41IDwtIGxzLnN0YXRudTEuNSA8LSBscy5ub25zdGF0bnUxLjUgPC0gcmVwKDAsbGVuZ3RoKGRpc3RhbmNlKSkKbXNlLnN0YXRudWVzdCA8LSBtc2Uubm9uc3RhdG51ZXN0IDwtIGxzLnN0YXRudWVzdCA8LSBscy5ub25zdGF0bnVlc3QgPC0gcmVwKDAsbGVuZ3RoKGRpc3RhbmNlKSkKCiMgY3Jvc3MtdmFsaWRhdGlvbiBmb3ItbG9vcApmb3IgKGogaW4gMTpsZW5ndGgoZGlzdGFuY2UpKSB7CiAgcHJpbnQoaikKICAjIGNyb3NzLXZhbGlkYXRpb24gb2YgdGhlIHN0YXRpb25hcnkgbW9kZWwKICBjdi5zdGF0bnUwLjUgPC0gaW5sYS5ncm91cC5jdihyc3BkZV9maXRfc3RhdG51MC41LCBncm91cHMgPSBHUk9VUFNbW2pdXSkKICBjdi5zdGF0bnUxLjUgPC0gaW5sYS5ncm91cC5jdihyc3BkZV9maXRfc3RhdG51MS41LCBncm91cHMgPSBHUk9VUFNbW2pdXSkKICBjdi5zdGF0bnVlc3QgPC0gaW5sYS5ncm91cC5jdihyc3BkZV9maXRfc3RhdG51ZXN0LCBncm91cHMgPSBHUk9VUFNbW2pdXSkKICAjIGNyb3NzLXZhbGlkYXRpb24gb2YgdGhlIG5vbnN0YXRpb25hcnkgbW9kZWwKICBjdi5ub25zdGF0bnUwLjUgPC0gaW5sYS5ncm91cC5jdihyc3BkZV9maXRfbm9uc3RhdG51MC41LCBncm91cHMgPSBHUk9VUFNbW2pdXSkKICBjdi5ub25zdGF0bnUxLjUgPC0gaW5sYS5ncm91cC5jdihyc3BkZV9maXRfbm9uc3RhdG51MS41LCBncm91cHMgPSBHUk9VUFNbW2pdXSkKICBjdi5ub25zdGF0bnVlc3QgPC0gaW5sYS5ncm91cC5jdihyc3BkZV9maXRfbm9uc3RhdG51ZXN0LCBncm91cHMgPSBHUk9VUFNbW2pdXSkKICAjIG9idGFpbiBNU0UgYW5kIExTCiAgbXNlLnN0YXRudTAuNVtqXSA8LSBtZWFuKChjdi5zdGF0bnUwLjUkbWVhbiAtIGRhdGEkeSleMikKICBtc2Uuc3RhdG51MS41W2pdIDwtIG1lYW4oKGN2LnN0YXRudTEuNSRtZWFuIC0gZGF0YSR5KV4yKQogIG1zZS5zdGF0bnVlc3Rbal0gPC0gbWVhbigoY3Yuc3RhdG51ZXN0JG1lYW4gLSBkYXRhJHkpXjIpCiAgCiAgCiAgbXNlLm5vbnN0YXRudTAuNVtqXSA8LSBtZWFuKChjdi5ub25zdGF0bnUwLjUkbWVhbiAtIGRhdGEkeSleMikKICBtc2Uubm9uc3RhdG51MS41W2pdIDwtIG1lYW4oKGN2Lm5vbnN0YXRudTEuNSRtZWFuIC0gZGF0YSR5KV4yKQogIG1zZS5ub25zdGF0bnVlc3Rbal0gPC0gbWVhbigoY3Yubm9uc3RhdG51ZXN0JG1lYW4gLSBkYXRhJHkpXjIpCiAgCiAgCiAgbHMuc3RhdG51MC41W2pdIDwtIG1lYW4obG9nKGN2LnN0YXRudTAuNSRjdikpCiAgbHMuc3RhdG51MS41W2pdIDwtIG1lYW4obG9nKGN2LnN0YXRudTEuNSRjdikpCiAgbHMuc3RhdG51ZXN0W2pdIDwtIG1lYW4obG9nKGN2LnN0YXRudWVzdCRjdikpCiAgCiAgbHMubm9uc3RhdG51MC41W2pdIDwtIG1lYW4obG9nKGN2Lm5vbnN0YXRudTAuNSRjdikpCiAgbHMubm9uc3RhdG51MS41W2pdIDwtIG1lYW4obG9nKGN2Lm5vbnN0YXRudTEuNSRjdikpCiAgbHMubm9uc3RhdG51ZXN0W2pdIDwtIG1lYW4obG9nKGN2Lm5vbnN0YXRudWVzdCRjdikpCn0KCiMgQ3JlYXRlIGRhdGEgZnJhbWVzCm1zZV9kZiA8LSBkYXRhLmZyYW1lKAogIGRpc3RhbmNlLAogIFN0YXRudTAuNSA9IG1zZS5zdGF0bnUwLjUsCiAgTm9uc3RhdG51MC41ID0gbXNlLm5vbnN0YXRudTAuNSwKICBTdGF0bnUxLjUgPSBtc2Uuc3RhdG51MS41LAogIE5vbnN0YXRudTEuNSA9IG1zZS5ub25zdGF0bnUxLjUsCiAgU3RhdG51ZXN0ID0gbXNlLnN0YXRudWVzdCwKICBOb25zdGF0bnVlc3QgPSBtc2Uubm9uc3RhdG51ZXN0CikKCmxzX2RmIDwtIGRhdGEuZnJhbWUoCiAgZGlzdGFuY2UsCiAgU3RhdG51MC41ID0gLWxzLnN0YXRudTAuNSwKICBOb25zdGF0bnUwLjUgPSAtbHMubm9uc3RhdG51MC41LAogIFN0YXRudTEuNSA9IC1scy5zdGF0bnUxLjUsCiAgTm9uc3RhdG51MS41ID0gLWxzLm5vbnN0YXRudTEuNSwKICBTdGF0bnVlc3QgPSAtbHMuc3RhdG51ZXN0LAogIE5vbnN0YXRudWVzdCA9IC1scy5ub25zdGF0bnVlc3QKKQpgYGAKCgpCZWxvdyB3ZSBwbG90IHRoZSBjcm9zcy12YWxpZGF0aW9uIHJlc3VsdHMuCgo8ZGl2IHN0eWxlPSJjb2xvcjogYmx1ZTsiPgoqKioqKioqKgoqKlByZXNzIHRoZSBTaG93IGJ1dHRvbiBiZWxvdyB0byByZXZlYWwgdGhlIGNvZGUuKioKCioqKioqKioqCjwvZGl2PgoKYGBge3IsIGZpZy5kaW0gPSBjKDkuMjIsNC4wMSksIGNsYXNzLnNvdXJjZSA9ICJmb2xkLWhpZGUiLCBmaWcuY2FwID0gY2FwdGlvbmVyKCJNU0UgYW5kIG5lZ2F0aXZlIExvZy1TY29yZSBhcyBmdW5jdGlvbnMgb2YgZGlzdGFuY2UgKGluIGttKSBmb3IgdGhlIHN0YXRpb25hcnkgKGRvdGRhc2ggbGluZSwgJFxcYm9sZHN5bWJvbHtcXGNkb3QtXFxjZG90fSQpIGFuZCBub24tc3RhdGlvbmFyeSAoc29saWQgbGluZSwgJFxcYm9sZHN5bWJvbHstXFwhXFwhXFwhLVxcIVxcIVxcIS19JCkgIGNhc2VzIHdpdGggJFxcbnUgPSAwLjUkLCAkXFxudSA9IDEuNSQsIGFuZCAkXFxudSQgZXN0aW1hdGVkIChlc3QpLiIpfQoKY2hvb3NlX2luZGV4IDwtIHNlcSgyLCBucm93KG1zZV9kZiksIGJ5ID0gMykKbXNlX2RmX3JlZCA8LSBtc2VfZGZbY2hvb3NlX2luZGV4LF0KbHNfZGZfcmVkIDwtIGxzX2RmW2Nob29zZV9pbmRleCxdCiMgQ29udmVydCB0byBsb25nIGZvcm1hdAptc2VfbG9uZyA8LSBtc2VfZGZfcmVkICU+JQogIHBpdm90X2xvbmdlcihjb2xzID0gLWRpc3RhbmNlLCBuYW1lc190byA9ICJudSIsIHZhbHVlc190byA9ICJNU0UiKQoKbHNfbG9uZyA8LSBsc19kZl9yZWQgJT4lCiAgcGl2b3RfbG9uZ2VyKGNvbHMgPSAtZGlzdGFuY2UsIG5hbWVzX3RvID0gIm51IiwgdmFsdWVzX3RvID0gIkxvZ1Njb3JlIikKCgojIFVwZGF0ZSB0aGUgbGFiZWwgbWFwcGluZ3Mgd2l0aCB0aGUgbmV3IGxlZ2VuZCB0aXRsZQpsYWJlbF9tYXBwaW5nIDwtIGMoCiAgIlN0YXRudTAuNSIgPSAiMSIsIAogICJOb25zdGF0bnUwLjUiID0gIjEiLCAKICAiU3RhdG51MS41IiA9ICIyIiwgCiAgIk5vbnN0YXRudTEuNSIgPSAiMiIsIAogICJTdGF0bnVlc3QiID0gcGFzdGUocm91bmQobWVhbl9hbmRfbW9kZV9wYXJhbXNfc3RhdG51ZXN0WzUsMV0rMC41LCAzKSwgIihlc3QpIiksIAogICJOb25zdGF0bnVlc3QiID0gcGFzdGUocm91bmQobWVhbl9hbmRfbW9kZV9wYXJhbXNfbm9uc3RhdG51ZXN0WzcsMV0rMC41LCAzKSwgIihlc3QpIikKKQoKIyBEZWZpbmUgY29sb3IgYW5kIGxpbmV0eXBlIG1hcHBpbmcKY29sb3JfbWFwcGluZyA8LSBjKAogICJTdGF0bnUwLjUiID0gImJsdWUiLCAKICAiTm9uc3RhdG51MC41IiA9ICJibHVlIiwgCiAgIlN0YXRudTEuNSIgPSAiYmxhY2siLCAKICAiTm9uc3RhdG51MS41IiA9ICJibGFjayIsIAogICJTdGF0bnVlc3QiID0gInJlZCIsIAogICJOb25zdGF0bnVlc3QiID0gInJlZCIKKQoKbGluZXR5cGVfbWFwcGluZyA8LSBjKAogICJTdGF0bnUwLjUiID0gImRvdGRhc2giLCAKICAiTm9uc3RhdG51MC41IiA9ICJzb2xpZCIsIAogICJTdGF0bnUxLjUiID0gImRvdGRhc2giLCAKICAiTm9uc3RhdG51MS41IiA9ICJzb2xpZCIsIAogICJTdGF0bnVlc3QiID0gImRvdGRhc2giLCAKICAiTm9uc3RhdG51ZXN0IiA9ICJzb2xpZCIKKQoKIyBQbG90IE1TRQptc2VfcGxvdCA8LSBnZ3Bsb3QobXNlX2xvbmcsIGFlcyh4ID0gZGlzdGFuY2UsIHkgPSBNU0UsIGNvbG9yID0gbnUsIGxpbmV0eXBlID0gbnUpKSArCiAgZ2VvbV9saW5lKGxpbmV3aWR0aCA9IDEpICsKICBsYWJzKHkgPSAiTVNFIiwgeCA9ICJEaXN0YW5jZSBpbiBrbSIpICsKICBzY2FsZV9jb2xvcl9tYW51YWwodmFsdWVzID0gY29sb3JfbWFwcGluZywgbGFiZWxzID0gbGFiZWxfbWFwcGluZywgbmFtZSA9IGV4cHJlc3Npb24oYWxwaGEpKSArCiAgc2NhbGVfbGluZXR5cGVfbWFudWFsKHZhbHVlcyA9IGxpbmV0eXBlX21hcHBpbmcsIGxhYmVscyA9IGxhYmVsX21hcHBpbmcsIG5hbWUgPSBleHByZXNzaW9uKGFscGhhKSkgKwogIHRoZW1lX21pbmltYWwoKSArCiAgdGhlbWUodGV4dCA9IGVsZW1lbnRfdGV4dChmYW1pbHkgPSAiUGFsYXRpbm8iKSkKCiMgUGxvdCBuZWdhdGl2ZSBsb2ctc2NvcmUKbHNfcGxvdCA8LSBnZ3Bsb3QobHNfbG9uZywgYWVzKHggPSBkaXN0YW5jZSwgeSA9IExvZ1Njb3JlLCBjb2xvciA9IG51LCBsaW5ldHlwZSA9IG51KSkgKwogIGdlb21fbGluZShsaW5ld2lkdGggPSAxKSArCiAgbGFicyh5ID0gIk5lZ2F0aXZlIExvZy1TY29yZSIsIHggPSAiRGlzdGFuY2UgaW4ga20iKSArCiAgc2NhbGVfY29sb3JfbWFudWFsKHZhbHVlcyA9IGNvbG9yX21hcHBpbmcsIGxhYmVscyA9IGxhYmVsX21hcHBpbmcsIG5hbWUgPSBleHByZXNzaW9uKGFscGhhKSkgKwogIHNjYWxlX2xpbmV0eXBlX21hbnVhbCh2YWx1ZXMgPSBsaW5ldHlwZV9tYXBwaW5nLCBsYWJlbHMgPSBsYWJlbF9tYXBwaW5nLCBuYW1lID0gZXhwcmVzc2lvbihhbHBoYSkpICsKICB0aGVtZV9taW5pbWFsKCkgKwogIHRoZW1lKHRleHQgPSBlbGVtZW50X3RleHQoZmFtaWx5ID0gIlBhbGF0aW5vIikpCgojIENvbWJpbmUgcGxvdHMgd2l0aCBhIHNoYXJlZCBsZWdlbmQgYXQgdGhlIHRvcCBpbiBhIHNpbmdsZSBsaW5lCmNvbWJpbmVkX3Bsb3QgPC0gbXNlX3Bsb3QgKyBsc19wbG90ICsgCiAgcGxvdF9sYXlvdXQoZ3VpZGVzID0gJ2NvbGxlY3QnKSAmIAogIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICdyaWdodCcpICYgCiAgZ3VpZGVzKGNvbG9yID0gZ3VpZGVfbGVnZW5kKG5jb2wgPSAxKSwgbGluZXR5cGUgPSBndWlkZV9sZWdlbmQobnJvdyA9IDEpKQoKIyBTYXZlIGNvbWJpbmVkIHBsb3QKZ2dzYXZlKGhlcmUoImRhdGFfZmlsZXMvY3Jvc3N2YWxfcGVtcy5wbmciKSwgcGxvdCA9IGNvbWJpbmVkX3Bsb3QsIHdpZHRoID0gOS4yMiwgaGVpZ2h0ID0gNC4wMSwgZHBpID0gNTAwKQojIERpc3BsYXkgY29tYmluZWQgcGxvdApwcmludChjb21iaW5lZF9wbG90KQpgYGAKClNhdmUgc29tZSBvZiB0aGUgb2JqZWN0cyB0byBiZSB1c2VkIGluIHRoZSBuZXh0IHZpZ25ldHRlLgoKYGBge3J9CiMgU2F2ZSB0aGUgcmVzdWx0cwpsaXN0X3RvX3NhdmUgPC0gbGlzdChtZWFuX2FuZF9tb2RlX3BhcmFtc19zdGF0bnUwLjUgPSBtZWFuX2FuZF9tb2RlX3BhcmFtc19zdGF0bnUwLjUsCiAgICAgICAgICAgICAgICAgICAgIG1lYW5fYW5kX21vZGVfcGFyYW1zX25vbnN0YXRudTAuNSA9IG1lYW5fYW5kX21vZGVfcGFyYW1zX25vbnN0YXRudTAuNSwKICAgICAgICAgICAgICAgICAgICAgbWVhbl9hbmRfbW9kZV9wYXJhbXNfc3RhdG51MS41ID0gbWVhbl9hbmRfbW9kZV9wYXJhbXNfc3RhdG51MS41LAogICAgICAgICAgICAgICAgICAgICBtZWFuX2FuZF9tb2RlX3BhcmFtc19ub25zdGF0bnUxLjUgPSBtZWFuX2FuZF9tb2RlX3BhcmFtc19ub25zdGF0bnUxLjUsIAogICAgICAgICAgICAgICAgICAgICBtZWFuX2FuZF9tb2RlX3BhcmFtc19zdGF0bnVlc3QgPSBtZWFuX2FuZF9tb2RlX3BhcmFtc19zdGF0bnVlc3QsCiAgICAgICAgICAgICAgICAgICAgIG1lYW5fYW5kX21vZGVfcGFyYW1zX25vbnN0YXRudWVzdCA9IG1lYW5fYW5kX21vZGVfcGFyYW1zX25vbnN0YXRudWVzdCwgCiAgICAgICAgICAgICAgICAgICAgIG1zZV9kZiA9IG1zZV9kZiwgCiAgICAgICAgICAgICAgICAgICAgIGxzX2RmID0gbHNfZGYsIAogICAgICAgICAgICAgICAgICAgICBCLnRhdSA9IEIudGF1LCAKICAgICAgICAgICAgICAgICAgICAgQi5rYXBwYSA9IEIua2FwcGEsIAogICAgICAgICAgICAgICAgICAgICBncmFwaCA9IGdyYXBoKQpzYXZlKGxpc3RfdG9fc2F2ZSwgZmlsZSA9IGhlcmUoImRhdGFfZmlsZXMvcGVtc19yZXBsMl9yZXN1bHRzLlJEYXRhIikpCmBgYAoKIyBSZWZlcmVuY2VzCgpgYGB7cn0KY2l0ZV9wYWNrYWdlcyhvdXRwdXQgPSAicGFyYWdyYXBoIiwgb3V0LmRpciA9ICIuIikKYGBgCgoK