Go back to the About page.
Let us set some global options for all code chunks in this document.
# Set seed for reproducibility
set.seed(1982)
# Set global options for all code chunks
knitr::opts_chunk$set(
# Disable messages printed by R code chunks
message = FALSE,
# Disable warnings printed by R code chunks
warning = FALSE,
# Show R code within code chunks in output
echo = TRUE,
# Include both R code and its results in output
include = TRUE,
# Evaluate R code chunks
eval = TRUE,
# Enable caching of R code chunks for faster rendering
cache = FALSE,
# Align figures in the center of the output
fig.align = "center",
# Enable retina display for high-resolution figures
retina = 2,
# Show errors in the output instead of stopping rendering
error = TRUE,
# Do not collapse code and output into a single block
collapse = FALSE
)
# Start the figure counter
fig_count <- 0
# Define the captioner function
captioner <- function(caption) {
fig_count <<- fig_count + 1
paste0("Figure ", fig_count, ": ", caption)
}
library(INLA)
library(inlabru)
library(rSPDE)
library(MetricGraph)
library(Matrix)
library(dplyr)
library(plotly)
library(scales)
library(patchwork)
library(tidyr)
library(ggplot2)
library(reshape2)
library(sf)
library(here)
library(rmarkdown)
library(knitr)
library(grateful) # Cite all loaded packages
library(latex2exp)
library(plotrix)
Follow this link for more details.
# Matern covariance function
matern.covariance <- function(h, kappa, nu, sigma) {
if (nu == 1 / 2) {
C <- sigma^2 * exp(-kappa * abs(h))
} else {
C <- (sigma^2 / (2^(nu - 1) * gamma(nu))) *
((kappa * abs(h))^nu) * besselK(kappa * abs(h), nu)
}
C[h == 0] <- sigma^2
return(as.matrix(C))
}
# Folded.matern.covariance.1d
folded.matern.covariance.1d.local <- function(x, kappa, nu, sigma,
L = 1, N = 10,
boundary = c("neumann",
"dirichlet", "periodic")) {
boundary <- tolower(boundary[1])
if (!(boundary %in% c("neumann", "dirichlet", "periodic"))) {
stop("The possible boundary conditions are 'neumann',
'dirichlet' or 'periodic'!")
}
addi <- t(outer(x, x, "+"))
diff <- t(outer(x, x, "-"))
s1 <- sapply(-N:N, function(j) {
diff + 2 * j * L
})
s2 <- sapply(-N:N, function(j) {
addi + 2 * j * L
})
if (boundary == "neumann") {
C <- rowSums(matern.covariance(h = s1, kappa = kappa,
nu = nu, sigma = sigma) +
matern.covariance(h = s2, kappa = kappa,
nu = nu, sigma = sigma))
} else if (boundary == "dirichlet") {
C <- rowSums(matern.covariance(h = s1, kappa = kappa,
nu = nu, sigma = sigma) -
matern.covariance(h = s2, kappa = kappa,
nu = nu, sigma = sigma))
} else {
C <- rowSums(matern.covariance(h = s1,
kappa = kappa, nu = nu, sigma = sigma))
}
return(matrix(C, nrow = length(x)))
}
# Function to get the true covariance matrix
gets_true_cov_mat = function(graph, kappa, nu, sigma, N, boundary){
h <- graph$mesh$V[,1]
true_cov_mat <- folded.matern.covariance.1d.local(x = h, kappa = kappa, nu = nu, sigma = sigma, N = N, boundary = boundary)
return(true_cov_mat)
}
# Define the graph
edge <- rbind(c(0,0),c(1,0))
edges <- list(edge)
graph <- metric_graph$new(edges = edges)
# parameters
h.ok <- 2^-10
type <- "covariance"
type_rational_approximation = "brasil"
rho <- 0.5
#m = 4
sigma <- 1
N.folded <- 10
boundary <- "neumann" # do not change this
# Mesh sizes
h_aux <- seq(5.5, 4.5, by = -1/4)
h_vector <- 2^-h_aux
h_label <- paste0("2^-", h_aux, "")
h_label_latex <- sprintf("$2^{-%f}$", h_aux)
# Alpha values
alpha_aux <- c(6, 7, 8, 9, 12)
alpha_vector <- alpha_aux/8
alpha_label <- paste0(alpha_aux, "/8")
theoretical_rate <- pmin(2*alpha_vector-1/2,2)
graph.ok <- graph$clone()
# Build graph with overkill mesh
graph.ok$build_mesh(h = h.ok)
graph.ok$compute_fem()
# Get the overkill mesh locations
loc.ok <- graph.ok$mesh$VtE # or graph.ok$get_mesh_locations()
# Initialize the list of graphs and the list of projection matrices
graphs <- list()
A <- list()
for(i in 1:length(h_vector)){
graphs[[i]] <- graph$clone()
graphs[[i]]$build_mesh(h = h_vector[i])
A[[i]] <- graphs[[i]]$fem_basis(loc.ok)
}
cov.error.interval <- matrix(NA, nrow = length(h_vector), ncol = length(alpha_vector))
m_values <- c()
for (j in 1:length(alpha_vector)) {
alpha <- alpha_vector[j]
fract_alpha <- alpha - floor(alpha)
nu <- alpha - 0.5
kappa <- sqrt(8*nu)/rho
tau <- sqrt(gamma(nu) / (sigma^2 * kappa^(2*nu) * (4*pi)^(1/2) * gamma(nu + 1/2))) #sigma = 1, d = 1
Sigma.true.interval <- gets_true_cov_mat(graph = graph.ok,
kappa = kappa,
nu = nu,
sigma = sigma,
N = N.folded,
boundary = boundary)
for (i in 1:length(h_vector)) {
h <- h_vector[i]
m <- min(20, 5*ceiling((min(2*alpha - 1/2,2) + 1/2)^2*log(h)^2/(4*pi^2*fract_alpha)))
m_values <- c(m_values, m)
Sigma <- matern.operators(alpha = alpha,
kappa = kappa,
tau = tau,
m = m,
graph = graphs[[i]],
type = type,
type_rational_approximation = type_rational_approximation)$covariance_mesh()
Sigma.approx.interval <- A[[i]]%*%Sigma%*%t(A[[i]])
cov.error.interval[i,j] <- sqrt(as.double(t(graph.ok$mesh$weights)%*%(Sigma.true.interval - Sigma.approx.interval)^2%*%graph.ok$mesh$weights))
}
}
print(m_values)
## [1] 10 10 5 5 5 10 10 10 5 5 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
slope_interval <- numeric(length(alpha_vector))
for (u in 1:length(alpha_vector)) {
slope_interval[u] <- coef(lm(log(cov.error.interval[,u]) ~ log(h_vector)))[2]
}
transposed_df <- data.frame(t(data.frame(alpha = alpha_vector, theoretical_rate = theoretical_rate, slope = slope_interval)))
rownames(transposed_df) <- c("alpha", "Theoretical rates", "Interval graph")
colnames(transposed_df) <- NULL
# Display the transposed data frame
transposed_df |> paged_table()
loglog_line_equation <- function(x1, y1, slope) {
b <- log10(y1 / (x1 ^ slope))
function(x) {
(x ^ slope) * (10 ^ b)
}
}
guiding_lines <- matrix(NA, nrow = length(h_vector), ncol = length(alpha_vector))
for (j in 1:length(alpha_vector)) {
guiding_lines_aux <- matrix(NA, nrow = length(h_vector), ncol = length(h_vector))
for(k in 1:length(h_vector)){
point_x1 <- h_vector[k]
point_y1 <- cov.error.interval[k, j]
slope <- theoretical_rate[j]
line <- loglog_line_equation(x1 = point_x1, y1 = point_y1, slope = slope)
guiding_lines_aux[,k] <- line(h_vector)
}
guiding_lines[,j] <- apply(guiding_lines_aux, 1, mean)
}
guiding_lines1 <- guiding_lines
# Generate default ggplot2 colors
default_colors <- scales::hue_pal()(ncol(guiding_lines))
# Create the plot_lines list with different colors for each line
plot_lines <- lapply(1:ncol(guiding_lines), function(i) {
geom_line(data = data.frame(x = h_vector, y = guiding_lines[, i]),
aes(x = x, y = y), color = default_colors[i], linetype = "dashed", show.legend = FALSE)
})
df <- as.data.frame(cbind(h_vector, cov.error.interval))
colnames(df) <- c("h_vector", alpha_vector)
df_melted <- melt(df, id.vars = "h_vector", variable.name = "column", value.name = "value")
df_melted1 <- df_melted
p.interval <- ggplot() +
geom_line(data = df_melted, aes(x = h_vector, y = value, color = column)) +
geom_point(data = df_melted, aes(x = h_vector, y = value, color = column)) +
plot_lines +
labs(title = "Interval graph",
x = "h",
y = "Covariance Error",
color = expression(alpha)) +
scale_x_log10(breaks = h_vector, labels = round(h_vector,3)) +
scale_y_log10() +
theme_minimal() +
theme(text = element_text(family = "Palatino"))
Figure 1: Convergence rates for the interval graph.
Follow this link for more details.
# Matern covariance function
matern.covariance <- function(h, kappa, nu, sigma) {
if (nu == 1 / 2) {
C <- sigma^2 * exp(-kappa * abs(h))
} else {
C <- (sigma^2 / (2^(nu - 1) * gamma(nu))) *
((kappa * abs(h))^nu) * besselK(kappa * abs(h), nu)
}
C[h == 0] <- sigma^2
return(as.matrix(C))
}
# Folded.matern.covariance.1d
folded.matern.covariance.1d.local <- function(x, kappa, nu, sigma, L = 1, N = 10, boundary = c("neumann",
"dirichlet", "periodic")) {
boundary <- tolower(boundary[1])
if (!(boundary %in% c("neumann", "dirichlet", "periodic"))) {
stop("The possible boundary conditions are 'neumann',
'dirichlet' or 'periodic'!")
}
addi = t(outer(x, x, "+"))
diff = t(outer(x, x, "-"))
s1 <- sapply(-N:N, function(j) { # s1 is a matrix of size length(h)x(2N+1)
diff + 2 * j * L
})
s2 <- sapply(-N:N, function(j) {
addi + 2 * j * L
})
if (boundary == "neumann") {
C <- rowSums(matern.covariance(h = s1, kappa = kappa,
nu = nu, sigma = sigma) +
matern.covariance(h = s2, kappa = kappa,
nu = nu, sigma = sigma))
} else if (boundary == "dirichlet") {
C <- rowSums(matern.covariance(h = s1, kappa = kappa,
nu = nu, sigma = sigma) -
matern.covariance(h = s2, kappa = kappa,
nu = nu, sigma = sigma))
} else {
C <- rowSums(matern.covariance(h = s1,
kappa = kappa, nu = nu, sigma = sigma))
}
return(matrix(C, nrow = length(x)))
}
# Function to get the true covariance matrix
gets_true_cov_mat = function(graph, kappa, nu, sigma, N, boundary){
h = c(0,graph$get_edge_lengths()[1]*graph$mesh$PtE[,2])
true_cov_mat = folded.matern.covariance.1d.local(x = h, kappa = kappa, nu = nu, sigma = sigma, N = N, boundary = boundary)
return(true_cov_mat)
}
# Define the graph
r <- 1/(pi)
theta <- seq(from = -pi, to = pi, length.out = 100)
edge <- cbind(1+r+r*cos(theta), r*sin(theta))
edges <- list(edge)
graph <- metric_graph$new(edges = edges)
# parameters
h.ok <- 2^-10
type <- "covariance"
type_rational_approximation = "brasil"
rho <- 0.5
#m = 4
sigma <- 1
N.folded <- 10
boundary <- "periodic" # Do not change this
# Mesh sizes
h_aux <- seq(5.5, 4.5, by = -1/4)
h_vector <- 2^-h_aux
h_label <- paste0("2^-", h_aux, "")
h_label_latex <- sprintf("$2^{-%f}$", h_aux)
# Beta values
alpha_aux <- c(6, 7, 8, 9, 12)
alpha_vector <- alpha_aux/8
alpha_label <- paste0(alpha_aux, "/8")
theoretical_rate <- pmin(2*alpha_vector-1/2,2)
graph.ok <- graph$clone()
# Build graph with overkill mesh
graph.ok$build_mesh(h = h.ok)
graph.ok$compute_fem()
# Get the overkill mesh locations
loc.ok <- graph.ok$mesh$VtE # or graph.ok$get_mesh_locations()
# Initialize the list of graphs and the list of projection matrices
graphs <- list()
A <- list()
for(i in 1:length(h_vector)){
graphs[[i]] <- graph$clone()
graphs[[i]]$build_mesh(h = h_vector[i])
A[[i]] <- graphs[[i]]$fem_basis(loc.ok)
}
cov.error.circle <- matrix(NA, nrow = length(h_vector), ncol = length(alpha_vector))
m_values <- c()
for (j in 1:length(alpha_vector)) {
alpha <- alpha_vector[j]
fract_alpha <- alpha - floor(alpha)
nu <- alpha - 0.5
kappa <- sqrt(8*nu)/rho
tau <- sqrt(gamma(nu) / (sigma^2 * kappa^(2*nu) * (4*pi)^(1/2) * gamma(nu + 1/2))) #sigma = 1, d = 1
Sigma.true.circle <- gets_true_cov_mat(graph = graph.ok,
kappa = kappa,
nu = nu,
sigma = sigma,
N = N.folded,
boundary = boundary)
for (i in 1:length(h_vector)) {
h <- h_vector[i]
m <- min(20, 5*ceiling((min(2*alpha - 1/2,2) + 1/2)^2*log(h)^2/(4*pi^2*fract_alpha)))
m_values <- c(m_values, m)
Sigma <- matern.operators(alpha = alpha,
kappa = kappa,
tau = tau,
m = m,
graph = graphs[[i]],
type = type,
type_rational_approximation = type_rational_approximation)$covariance_mesh()
Sigma.approx.circle <- A[[i]]%*%Sigma%*%t(A[[i]])
cov.error.circle[i,j] <- sqrt(as.double(t(graph.ok$mesh$weights)%*%(Sigma.true.circle - Sigma.approx.circle)^2%*%graph.ok$mesh$weights))
}
}
print(m_values)
## [1] 10 10 5 5 5 10 10 10 5 5 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
slope_circle <- numeric(length(alpha_vector))
for (u in 1:length(alpha_vector)) {
slope_circle[u] <- coef(lm(log(cov.error.circle[,u]) ~ log(h_vector)))[2]
}
transposed_df <- data.frame(t(data.frame(alpha = alpha_vector, theoretical_rate = theoretical_rate, slope = slope_circle)))
rownames(transposed_df) <- c("alpha", "Theoretical rates", "Circle graph")
colnames(transposed_df) <- NULL
# Display the transposed data frame
transposed_df |> paged_table()
loglog_line_equation <- function(x1, y1, slope) {
b <- log10(y1 / (x1 ^ slope))
function(x) {
(x ^ slope) * (10 ^ b)
}
}
guiding_lines <- matrix(NA, nrow = length(h_vector), ncol = length(alpha_vector))
for (j in 1:length(alpha_vector)) {
guiding_lines_aux <- matrix(NA, nrow = length(h_vector), ncol = length(h_vector))
for(k in 1:length(h_vector)){
point_x1 <- h_vector[k]
point_y1 <- cov.error.circle[k, j]
slope <- theoretical_rate[j]
line <- loglog_line_equation(x1 = point_x1, y1 = point_y1, slope = slope)
guiding_lines_aux[,k] <- line(h_vector)
}
guiding_lines[,j] <- apply(guiding_lines_aux, 1, mean)
}
guiding_lines2 <- guiding_lines
# Generate default ggplot2 colors
default_colors <- scales::hue_pal()(ncol(guiding_lines))
# Create the plot_lines list with different colors for each line
plot_lines <- lapply(1:ncol(guiding_lines), function(i) {
geom_line(data = data.frame(x = h_vector, y = guiding_lines[, i]),
aes(x = x, y = y), color = default_colors[i], linetype = "dashed", show.legend = FALSE)
})
df <- as.data.frame(cbind(h_vector, cov.error.circle))
colnames(df) <- c("h_vector", alpha_vector)
df_melted <- melt(df, id.vars = "h_vector", variable.name = "column", value.name = "value")
df_melted2 <- df_melted
p.circle <- ggplot() +
geom_line(data = df_melted, aes(x = h_vector, y = value, color = column)) +
geom_point(data = df_melted, aes(x = h_vector, y = value, color = column)) +
plot_lines +
labs(title = "Circle graph",
x = "h",
y = "Covariance Error",
color = expression(alpha)) +
scale_x_log10(breaks = h_vector, labels = round(h_vector,3)) +
scale_y_log10() +
theme_minimal() +
theme(text = element_text(family = "Palatino"))
Figure 2: Convergence rates for the circle graph.
Follow this link for more details.
# Eigenfunctions for the tadpole graph
tadpole.eig <- function(k,graph){
x1 <- c(0,graph$get_edge_lengths()[1]*graph$mesh$PtE[graph$mesh$PtE[,1]==1,2])
x2 <- c(0,graph$get_edge_lengths()[2]*graph$mesh$PtE[graph$mesh$PtE[,1]==2,2])
if(k==0){
f.e1 <- rep(1,length(x1))
f.e2 <- rep(1,length(x2))
f1 = c(f.e1[1],f.e2[1],f.e1[-1], f.e2[-1])
f = list(phi=f1/sqrt(3))
} else {
f.e1 <- -2*sin(pi*k*1/2)*cos(pi*k*x1/2)
f.e2 <- sin(pi*k*x2/2)
f1 = c(f.e1[1],f.e2[1],f.e1[-1], f.e2[-1])
if((k %% 2)==1){
f = list(phi=f1/sqrt(3))
} else {
f.e1 <- (-1)^{k/2}*cos(pi*k*x1/2)
f.e2 <- cos(pi*k*x2/2)
f2 = c(f.e1[1],f.e2[1],f.e1[-1],f.e2[-1])
f <- list(phi=f1,psi=f2/sqrt(3/2))
}
}
return(f)
}
# Function to compute the true covariance matrix
gets_true_cov_mat <- function(graph, kappa, tau, alpha, n.overkill){
Sigma.kl <- matrix(0,nrow = dim(graph$mesh$V)[1],ncol = dim(graph$mesh$V)[1])
for(i in 0:n.overkill){
phi <- tadpole.eig(i,graph)$phi
Sigma.kl <- Sigma.kl + (1/(kappa^2 + (i*pi/2)^2)^(alpha))*phi%*%t(phi)
if(i>0 && (i %% 2)==0){
psi <- tadpole.eig(i,graph)$psi
Sigma.kl <- Sigma.kl + (1/(kappa^2 + (i*pi/2)^2)^(alpha))*psi%*%t(psi)
}
}
Sigma.kl <- Sigma.kl/tau^2
return(Sigma.kl)
}
# Define the graph
edge1 <- rbind(c(0,0), c(1,0))
theta <- seq(from = -pi, to = pi,length.out = 100)
edge2 <- cbind(1+1/pi+cos(theta)/pi, sin(theta)/pi)
edges <- list(edge1, edge2)
graph <- metric_graph$new(edges = edges)
# parameters
h.ok <- 2^-10
type <- "covariance"
type_rational_approximation = "brasil"
rho <- 0.5
#m = 4
sigma <- 1
n.overkill = 1000
# Mesh sizes
h_aux <- seq(5.5, 4.5, by = -1/4)
h_vector <- 2^-h_aux
h_label <- paste0("2^-", h_aux, "")
h_label_latex <- sprintf("$2^{-%f}$", h_aux)
# Beta values
alpha_aux <- c(6, 7, 8, 9, 12)
alpha_vector <- alpha_aux/8
alpha_label <- paste0(alpha_aux, "/8")
theoretical_rate <- pmin(2*alpha_vector-1/2,2)
graph.ok <- graph$clone()
# Build graph with overkill mesh
graph.ok$build_mesh(h = h.ok)
graph.ok$compute_fem()
# Get the overkill mesh locations
loc.ok <- graph.ok$mesh$VtE # or graph.ok$get_mesh_locations()
# Initialize the list of graphs and the list of projection matrices
graphs <- list()
A <- list()
for(i in 1:length(h_vector)){
graphs[[i]] <- graph$clone()
graphs[[i]]$build_mesh(h = h_vector[i])
A[[i]] <- graphs[[i]]$fem_basis(loc.ok)
}
cov.error.tadpole <- matrix(NA, nrow = length(h_vector), ncol = length(alpha_vector))
m_values <- c()
for (j in 1:length(alpha_vector)) {
alpha <- alpha_vector[j]
fract_alpha <- alpha - floor(alpha)
nu <- alpha - 0.5
kappa <- sqrt(8*nu)/rho
tau <- sqrt(gamma(nu) / (sigma^2 * kappa^(2*nu) * (4*pi)^(1/2) * gamma(nu + 1/2))) #sigma = 1, d = 1
Sigma.true.tadpole <- gets_true_cov_mat(graph = graph.ok,
kappa = kappa,
tau = tau,
alpha = alpha,
n.overkill = n.overkill)
for (i in 1:length(h_vector)) {
h <- h_vector[i]
m <- min(20, 5*ceiling((min(2*alpha - 1/2,2) + 1/2)^2*log(h)^2/(4*pi^2*fract_alpha)))
m_values <- c(m_values, m)
Sigma <- matern.operators(alpha = alpha,
kappa = kappa,
tau = tau,
m = m,
graph = graphs[[i]],
type = type,
type_rational_approximation = type_rational_approximation)$covariance_mesh()
Sigma.approx.tadpole <- A[[i]]%*%Sigma%*%t(A[[i]])
cov.error.tadpole[i,j] <- sqrt(as.double(t(graph.ok$mesh$weights)%*%(Sigma.true.tadpole - Sigma.approx.tadpole)^2%*%graph.ok$mesh$weights))
}
}
print(m_values)
## [1] 10 10 5 5 5 10 10 10 5 5 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
slope_tadpole <- numeric(length(alpha_vector))
for (u in 1:length(alpha_vector)) {
slope_tadpole[u] <- round(coef(lm(log(cov.error.tadpole[,u]) ~ log(h_vector)))[2], 7)
}
transposed_df <- data.frame(t(data.frame(alpha = alpha_vector, theoretical_rate = theoretical_rate, slope = slope_tadpole)))
rownames(transposed_df) <- c("alpha", "Theoretical rates", "Tadpole graph")
colnames(transposed_df) <- NULL
# Display the transposed data frame
transposed_df |> paged_table()
loglog_line_equation <- function(x1, y1, slope) {
b <- log10(y1 / (x1 ^ slope))
function(x) {
(x ^ slope) * (10 ^ b)
}
}
guiding_lines <- matrix(NA, nrow = length(h_vector), ncol = length(alpha_vector))
for (j in 1:length(alpha_vector)) {
guiding_lines_aux <- matrix(NA, nrow = length(h_vector), ncol = length(h_vector))
for(k in 1:length(h_vector)){
point_x1 <- h_vector[k]
point_y1 <- cov.error.tadpole[k, j]
slope <- theoretical_rate[j]
line <- loglog_line_equation(x1 = point_x1, y1 = point_y1, slope = slope)
guiding_lines_aux[,k] <- line(h_vector)
}
guiding_lines[,j] <- apply(guiding_lines_aux, 1, mean)
}
guiding_lines3 <- guiding_lines
# Generate default ggplot2 colors
default_colors <- scales::hue_pal()(ncol(guiding_lines))
# Create the plot_lines list with different colors for each line
plot_lines <- lapply(1:ncol(guiding_lines), function(i) {
geom_line(data = data.frame(x = h_vector, y = guiding_lines[, i]),
aes(x = x, y = y), color = default_colors[i], linetype = "dashed", show.legend = FALSE)
})
df <- as.data.frame(cbind(h_vector, cov.error.tadpole))
colnames(df) <- c("h_vector", alpha_vector)
df_melted <- melt(df, id.vars = "h_vector", variable.name = "column", value.name = "value")
df_melted3 <- df_melted
p.tadpole <- ggplot() +
geom_line(data = df_melted, aes(x = h_vector, y = value, color = column)) +
geom_point(data = df_melted, aes(x = h_vector, y = value, color = column)) +
plot_lines +
labs(title = "Tadpole graph",
x = "h",
y = "Covariance Error",
color = expression(alpha)) +
scale_x_log10(breaks = h_vector, labels = round(h_vector,3)) +
scale_y_log10() +
theme_minimal() +
theme(text = element_text(family = "Palatino"))
Figure 3: Convergence rates for the tadpole graph.
transposed_df <- data.frame(t(data.frame(alpha = alpha_vector,
theoretical_rate = theoretical_rate,
slope_interval = slope_interval,
slope_circle = slope_circle,
slope_tadpole = slope_tadpole)))
rownames(transposed_df) <- c("alpha", "Theoretical rates", "Interval graph", "Circle graph", "Tadpole graph")
colnames(transposed_df) <- NULL
# Display the transposed data frame
transposed_df |> paged_table()
ff_data <- rbind(mutate(df_melted1, graph = "Intervalgraph"),
mutate(df_melted2, graph = "Circlegraph"),
mutate(df_melted3, graph = "Tadpolegraph"))
ff_data$graph <- factor(ff_data$graph, levels = c("Intervalgraph", "Circlegraph", "Tadpolegraph"))
glines <- c(as.vector(guiding_lines1), as.vector(guiding_lines2), as.vector(guiding_lines3))
gg_data <- ff_data %>%
mutate(value = glines)
graph_labels <- c("Intervalgraph" = "Interval graph",
"Circlegraph" = "Circle graph",
"Tadpolegraph" = "Tadpole graph")
last_plot <- ggplot() +
geom_line(data = ff_data, aes(h_vector, value, colour = as.factor(column)), linewidth = 0.7) +
geom_line(data = gg_data, aes(h_vector, value, colour = as.factor(column)), linetype = "dashed", linewidth = 0.3) +
geom_point(data = ff_data, aes(h_vector, value, colour = as.factor(column))) +
facet_grid(~ graph, labeller = as_labeller(graph_labels)) +
scale_y_log10() +
scale_x_log10(breaks = h_vector, labels = round(h_vector, 3)) +
theme_bw() +
theme(panel.spacing = unit(0.4, "cm"),
text = element_text(family = "Palatino"),
strip.text = element_text(size = 16), # Panel titles
axis.title = element_text(size = 14), # Axis titles
axis.text = element_text(size = 12), # Axis text
legend.title = element_text(size = 14), # Legend title
legend.text = element_text(size = 12)) +
labs(x = "h", y = "Covariance Error", color = bquote(alpha))
last_plot
Figure 4: Observed covariance error for different values of \(\alpha\) as functions of the mesh size \(h\).
We used R version 4.4.1 (R Core Team 2024a) and the following R packages: cowplot v. 1.1.3 (Wilke 2024), ggmap v. 4.0.0.900 (Kahle and Wickham 2013), ggpubr v. 0.6.0 (Kassambara 2023), ggtext v. 0.1.2 (Wilke and Wiernik 2022), grid v. 4.4.1 (R Core Team 2024b), here v. 1.0.1 (Müller 2020), htmltools v. 0.5.8.1 (Cheng et al. 2024), INLA v. 24.12.11 (Rue, Martino, and Chopin 2009; Lindgren, Rue, and Lindström 2011; Martins et al. 2013; Lindgren and Rue 2015; De Coninck et al. 2016; Rue et al. 2017; Verbosio et al. 2017; Bakka et al. 2018; Kourounis, Fuchs, and Schenk 2018), inlabru v. 2.12.0.9002 (Yuan et al. 2017; Bachl et al. 2019), knitr v. 1.48 (Xie 2014, 2015, 2024), latex2exp v. 0.9.6 (Meschiari 2022), Matrix v. 1.6.5 (Bates, Maechler, and Jagan 2024), MetricGraph v. 1.4.0.9000 (Bolin, Simas, and Wallin 2023b, 2023a, 2023c, 2024; Bolin et al. 2024), OpenStreetMap v. 0.4.0 (Fellows and JMapViewer library by Jan Peter Stotz 2023), osmdata v. 0.2.5 (Mark Padgham et al. 2017), patchwork v. 1.2.0 (Pedersen 2024), plotly v. 4.10.4 (Sievert 2020), plotrix v. 3.8.4 (J 2006), reshape2 v. 1.4.4 (Wickham 2007), rmarkdown v. 2.28 (Xie, Allaire, and Grolemund 2018; Xie, Dervieux, and Riederer 2020; Allaire et al. 2024), rSPDE v. 2.4.0.9000 (Bolin and Kirchner 2020; Bolin and Simas 2023; Bolin, Simas, and Xiong 2024), scales v. 1.3.0 (Wickham, Pedersen, and Seidel 2023), sf v. 1.0.19 (E. Pebesma 2018; E. Pebesma and Bivand 2023), sp v. 2.1.4 (E. J. Pebesma and Bivand 2005; Bivand, Pebesma, and Gomez-Rubio 2013), tidyverse v. 2.0.0 (Wickham et al. 2019), viridis v. 0.6.4 (Garnier et al. 2023), xaringanExtra v. 0.8.0 (Aden-Buie and Warkentin 2024).