Below we set some global options for all code chunks in this
document.
Below we load the necessary libraries and define the auxiliary
functions.
Non-stationary features
Below we define \(\tau(\cdot)\)
(model_for_tau
) and \(\kappa(\cdot)\)
(model_for_kappa
) in \(\eqref{SPDE}\) as \(\tau(s) = \exp(0.05\cdot(x(s)-y(s)))\) and
\(\kappa(s) =
\exp(0.1\cdot(x(s)-y(s)))\), where \((x(s),y(s))\) are Euclidean coordinates on
the plane. These choices make \(\tau(\cdot)\) and \(\kappa(\cdot)\) large in the bottom-right
region of the MetricGraph
package’s logo, as shown in
Figure 2.
# Define an auxiliary variable
aux <- 0.1*(xypoints[,1] - xypoints[,2])
# Define the matrices B.tau and B.kappa
B.tau <- cbind(0, 1, 0, 0.5*aux, 0)
B.kappa <- cbind(0, 0, 1, 0, aux)
# Log-regression coefficients
theta <- c(0, 0, 1, 1)
# Define the models for tau and kappa
model_for_tau <- exp(B.tau[,-1]%*%theta)
model_for_kappa <- exp(B.kappa[,-1]%*%theta)
Below we consider \(\alpha = 0.9, 1.3,
2.1\) and compute the covariance between one point, say the \(289\)-th point, and all other points on the
mesh.
# Choose a row number, any between 1 and dim(est_cov_matrix1)[1]
rownumber <- 289
# Choose alpha
nu1 <- 0.4
alpha1 <- nu1 + 1/2
# Compute the operator
op1 <- rSPDE::spde.matern.operators(graph = logo_graph,
B.tau = B.tau,
B.kappa = B.kappa,
parameterization = "spde",
theta = theta,
alpha = alpha1)
# Compute the covariance between the rownumber-th point and all other points
est_cov_matrix1 <- op1$covariance_mesh()
rowfromcov1 <- est_cov_matrix1[rownumber, ]
# Choose alpha
nu2 <- 0.8
alpha2 <- nu2 + 1/2
# Compute the operator
op2 <- rSPDE::spde.matern.operators(graph = logo_graph,
B.tau = B.tau,
B.kappa = B.kappa,
parameterization = "spde",
theta = theta,
alpha = alpha2)
# Compute the covariance between the rownumber-th point and all other points
est_cov_matrix2 <- op2$covariance_mesh()
rowfromcov2 <- est_cov_matrix2[rownumber, ]
# Choose alpha
nu3 <- 1.6
alpha3 <- nu3 + 1/2
# Compute the operator
op3 <- rSPDE::spde.matern.operators(graph = logo_graph,
B.tau = B.tau,
B.kappa = B.kappa,
parameterization = "spde",
theta = theta,
alpha = alpha3)
# Compute the covariance between the rownumber-th point and all other points
est_cov_matrix3 <- op3$covariance_mesh()
rowfromcov3 <- est_cov_matrix3[rownumber, ]
Covariance plots
Below we plot the covariance functions \(r_\nu(\cdot)=\text{Cov}(u(s_0),u(\cdot))\)
for different smoothness parameter \(\nu\) on the MetricGraph
package’s logo.
Press the Show button below to reveal the code.
# Create a plot for the covariance between point1 and all other points
c1 <- logo_graph$plot_function(X = rowfromcov1, vertex_size = 0) +
ggtitle(latex2exp::TeX("$r_{0.4}$")) +
theme_minimal() +
theme(text = element_text(family = "Palatino"),
plot.title = element_text(size = 12)) +
annotate("point", x = xypoints[rownumber,1], y = xypoints[rownumber,2], size = 1, color = "black") +
annotate("text", x = xypoints[rownumber,1] - 0.8, y = xypoints[rownumber,2], label = "s[0]", parse = TRUE, size = 3, hjust = 0, color = "black")
# Create a plot for the covariance between point2 and all other points
c2 <- logo_graph$plot_function(X = rowfromcov2, vertex_size = 0) +
ggtitle(latex2exp::TeX("$r_{0.8}$")) +
theme_minimal() +
theme(text = element_text(family = "Palatino"),
plot.title = element_text(size = 12)) +
annotate("point", x = xypoints[rownumber,1], y = xypoints[rownumber,2], size = 1, color = "black") +
annotate("text", x = xypoints[rownumber,1] - 0.8, y = xypoints[rownumber,2], label = "s[0]", parse = TRUE, size = 3, hjust = 0, color = "black")
# Create a plot for the covariance between point3 and all other points
c3 <- logo_graph$plot_function(X = rowfromcov3, vertex_size = 0) +
ggtitle(latex2exp::TeX("$r_{1.6}$")) +
theme_minimal() +
theme(text = element_text(family = "Palatino"),
plot.title = element_text(size = 12)) +
annotate("point", x = xypoints[rownumber,1], y = xypoints[rownumber,2], size = 1, color = "black") +
annotate("text", x = xypoints[rownumber,1] - 0.8, y = xypoints[rownumber,2], label = "s[0]", parse = TRUE, size = 3, hjust = 0, color = "black")
# Combine the three plots
cs <- c1 + c2 + c3
# Save the combined plot
ggsave(here("data_files/cov_plots_diff_nu.png"), plot = cs, width = 13.83, height = 4.5, dpi = 300)
# Print the combined plot
print(cs)
Below we show 3D plots of the covariance functions \(r_\nu(\cdot)=\text{Cov}(u(s_0),u(\cdot))\)
for different smoothness parameter \(\nu\) on the MetricGraph
package’s logo.
Press the Show button below to reveal the code.
p1 <- logo_graph$plot_function(X = rowfromcov1, vertex_size = 1, plotly = TRUE, edge_color = "black", edge_width = 3, line_color = "blue", line_width = 3)
p2 <- logo_graph$plot_function(X = rowfromcov2, vertex_size = 1, plotly = TRUE, edge_color = "black", edge_width = 3, line_color = "red", line_width = 3, p = p1)
p3 <- logo_graph$plot_function(X = rowfromcov3, vertex_size = 1, plotly = TRUE, edge_color = "black", edge_width = 3, line_color = "darkgreen", line_width = 3, p = p2)
p <- p3 %>%
config(mathjax = 'cdn') %>%
layout(font = list(family = "Palatino"),
showlegend = FALSE,
scene = list(
aspectratio = list(x = 1.5, y = 1.5, z = 1.5),
camera = list(
eye = list(x = 3, y = -2, z = 0.5), # Adjust the viewpoint
center = list(x = 0, y = 0, z = 0)), # Focus point
annotations = list(
list(
x = 3, y = 4, z = 0.38,
text = TeX("\\alpha"),
textangle = 0, ax = 60, ay = 0,
font = list(color = "black", size = 16),
arrowcolor = "white", arrowsize = 1, arrowwidth = 0.1,arrowhead = 1),
list(
x = 3, y = 4, z = 0.35,
text = TeX(paste0("\\bullet\\mbox{ ", alpha1, "}")),
textangle = 0, ax = 60, ay = 0,
font = list(color = "blue", size = 16),
arrowcolor = "white", arrowsize = 1, arrowwidth = 0.1,arrowhead = 1),
list(
x = 3, y = 4, z = 0.33,
text = TeX(paste0("\\bullet\\mbox{ ", alpha2, "}")),
textangle = 0, ax = 60, ay = 0,
font = list(color = "red", size = 16),
arrowcolor = "white", arrowsize = 1, arrowwidth = 0.1,arrowhead = 1),
list(
x = 3, y = 4, z = 0.31,
text = TeX(paste0("\\bullet\\mbox{ ", alpha3, "}")),
textangle = 0, ax = 60, ay = 0,
font = list(color = "darkgreen", size = 16),
arrowcolor = "white", arrowsize = 1, arrowwidth = 0.1,arrowhead = 1),
list(
x = 2.5, y = 4.5, z = 0,
text = TeX("s_0"),
textangle = 0, ax = 0, ay = 15,
font = list(color = "black", size = 16),
arrowcolor = "white", arrowsize = 1, arrowwidth = 0.1,arrowhead = 1)))) %>%
add_trace(x = xypoints[rownumber, 2], y = xypoints[rownumber, 1], z = 0, mode = "markers", type = "scatter3d",
marker = list(size = 4, color = "black", symbol = 104))
# Save the 3D plot
save(p, file = here("data_files/3d_cov_plots_diff_nu.RData"))
Here a list of the packages used in this document.
cite_packages(output = "paragraph", out.dir = ".")
We used R version 4.4.1 (R Core Team
2024a) and the following R packages: cowplot v. 1.1.3 (Wilke 2024), ggmap v. 4.0.0.900 (Kahle and Wickham 2013), ggpubr v. 0.6.0 (Kassambara 2023), ggtext v. 0.1.2 (Wilke and Wiernik 2022), grid v. 4.4.1 (R Core Team 2024b), here v. 1.0.1 (Müller 2020), htmltools v. 0.5.8.1 (Cheng et al. 2024), INLA v. 24.12.11 (Rue, Martino, and Chopin 2009; Lindgren, Rue, and
Lindström 2011; Martins et al. 2013; Lindgren and Rue 2015; De Coninck
et al. 2016; Rue et al. 2017; Verbosio et al. 2017; Bakka et al. 2018;
Kourounis, Fuchs, and Schenk 2018), inlabru v. 2.12.0.9002 (Yuan et al. 2017; Bachl et al. 2019), knitr v.
1.48 (Xie 2014, 2015, 2024), latex2exp v.
0.9.6 (Meschiari 2022), Matrix v. 1.6.5
(Bates, Maechler, and Jagan 2024),
MetricGraph v. 1.4.0.9000 (Bolin, Simas, and
Wallin 2023b, 2023a, 2023c, 2024; Bolin et al. 2024),
OpenStreetMap v. 0.4.0 (Fellows and JMapViewer
library by Jan Peter Stotz 2023), osmdata v. 0.2.5 (Mark Padgham et al. 2017), patchwork v. 1.2.0
(Pedersen 2024), plotly v. 4.10.4 (Sievert 2020), plotrix v. 3.8.4 (J 2006), reshape2 v. 1.4.4 (Wickham 2007), rmarkdown v. 2.28 (Xie, Allaire, and Grolemund 2018; Xie, Dervieux, and
Riederer 2020; Allaire et al. 2024), rSPDE v. 2.4.0.9000 (Bolin and Kirchner 2020; Bolin and Simas 2023; Bolin,
Simas, and Xiong 2024), scales v. 1.3.0 (Wickham, Pedersen, and Seidel 2023), sf v.
1.0.19 (E. Pebesma 2018; E. Pebesma and Bivand
2023), sp v. 2.1.4 (E. J. Pebesma and
Bivand 2005; Bivand, Pebesma, and Gomez-Rubio 2013), tidyverse v.
2.0.0 (Wickham et al. 2019), viridis v.
0.6.4 (Garnier et al. 2023), xaringanExtra
v. 0.8.0 (Aden-Buie and Warkentin
2024).
Allaire, JJ, Yihui Xie, Christophe Dervieux, Jonathan McPherson, Javier
Luraschi, Kevin Ushey, Aron Atkins, et al. 2024.
rmarkdown: Dynamic Documents for r.
https://github.com/rstudio/rmarkdown.
Bachl, Fabian E., Finn Lindgren, David L. Borchers, and Janine B.
Illian. 2019.
“inlabru: An
R Package for Bayesian Spatial Modelling from
Ecological Survey Data.” Methods in Ecology and
Evolution 10: 760–66.
https://doi.org/10.1111/2041-210X.13168.
Bakka, Haakon, Håvard Rue, Geir-Arne Fuglstad, Andrea I. Riebler, David
Bolin, Janine Illian, Elias Krainski, Daniel P. Simpson, and Finn K.
Lindgren. 2018.
“Spatial Modelling with INLA:
A Review.” WIRES (Invited Extended Review)
xx (Feb): xx–.
http://arxiv.org/abs/1802.06350.
Bates, Douglas, Martin Maechler, and Mikael Jagan. 2024.
Matrix: Sparse and Dense Matrix Classes and
Methods.
https://CRAN.R-project.org/package=Matrix.
Bivand, Roger S., Edzer Pebesma, and Virgilio Gomez-Rubio. 2013.
Applied Spatial Data Analysis with R, Second
Edition. Springer, NY.
https://asdar-book.org/.
Bolin, David, and Kristin Kirchner. 2020.
“The Rational
SPDE Approach for Gaussian Random Fields with
General Smoothness.” Journal of Computational and Graphical
Statistics 29 (2): 274–85.
https://doi.org/10.1080/10618600.2019.1665537.
Bolin, David, Mihály Kovács, Vivek Kumar, and Alexandre B. Simas. 2024.
“Regularity and Numerical Approximation of Fractional Elliptic
Differential Equations on Compact Metric Graphs.” Mathematics
of Computation 93 (349): 2439–72.
https://doi.org/10.1090/mcom/3929.
Bolin, David, and Alexandre B. Simas. 2023.
rSPDE: Rational Approximations of Fractional
Stochastic Partial Differential Equations.
https://CRAN.R-project.org/package=rSPDE.
Bolin, David, Alexandre B. Simas, and Jonas Wallin. 2023a.
“Markov
Properties of Gaussian Random Fields on Compact Metric Graphs.”
arXiv Preprint arXiv:2304.03190.
https://doi.org/10.48550/arXiv.2304.03190.
———. 2023b.
MetricGraph: Random Fields on Metric
Graphs.
https://CRAN.R-project.org/package=MetricGraph.
———. 2023c.
“Statistical Inference for Gaussian Whittle-Matérn
Fields on Metric Graphs.” arXiv Preprint
arXiv:2304.10372.
https://doi.org/10.48550/arXiv.2304.10372.
———. 2024.
“Gaussian Whittle-Matérn Fields on Metric
Graphs.” Bernoulli 30 (2): 1611–39.
https://doi.org/10.3150/23-BEJ1647.
Bolin, David, Alexandre B. Simas, and Zhen Xiong. 2024.
“Covariance-Based Rational Approximations of Fractional SPDEs for
Computationally Efficient Bayesian Inference.” Journal of
Computational and Graphical Statistics 33 (1): 64–74.
https://doi.org/10.1080/10618600.2023.2231051.
De Coninck, Arne, Bernard De Baets, Drosos Kourounis, Fabio Verbosio,
Olaf Schenk, Steven Maenhout, and Jan Fostier. 2016.
“Needles: Toward Large-Scale Genomic Prediction with
Marker-by-Environment Interaction.” Genetics 203 (1):
543–55.
https://doi.org/10.1534/genetics.115.179887.
Fellows, Ian, and using the JMapViewer library by Jan Peter Stotz. 2023.
OpenStreetMap: Access to Open Street Map Raster
Images.
https://CRAN.R-project.org/package=OpenStreetMap.
Garnier, Simon, Ross, Noam, Rudis, Robert, Camargo, et al. 2023.
viridis(Lite) - Colorblind-Friendly
Color Maps for r.
https://doi.org/10.5281/zenodo.4679423.
J, Lemon. 2006. “Plotrix: A Package in the Red Light
District of r.” R-News 6 (4): 8–12.
Kahle, David, and Hadley Wickham. 2013.
“ggmap: Spatial Visualization with Ggplot2.”
The R Journal 5 (1): 144–61.
https://journal.r-project.org/archive/2013-1/kahle-wickham.pdf.
Kassambara, Alboukadel. 2023.
ggpubr:
“ggplot2” Based Publication
Ready Plots.
https://CRAN.R-project.org/package=ggpubr.
Kourounis, D., A. Fuchs, and O. Schenk. 2018.
“Towards the Next
Generation of Multiperiod Optimal Power Flow Solvers.” IEEE
Transactions on Power Systems PP (99): 1–10.
https://doi.org/10.1109/TPWRS.2017.2789187.
Lindgren, Finn, and Håvard Rue. 2015.
“Bayesian Spatial Modelling
with R-INLA.” Journal of
Statistical Software 63 (19): 1–25.
http://www.jstatsoft.org/v63/i19/.
Lindgren, Finn, Håvard Rue, and Johan Lindström. 2011. “An
Explicit Link Between Gaussian Fields and
Gaussian Markov Random Fields: The Stochastic
Partial Differential Equation Approach (with Discussion).”
Journal of the Royal Statistical Society B 73 (4): 423–98.
Mark Padgham, Bob Rudis, Robin Lovelace, and Maëlle Salmon. 2017.
“Osmdata.” Journal of Open Source Software 2 (14):
305.
https://doi.org/10.21105/joss.00305.
Martins, Thiago G., Daniel Simpson, Finn Lindgren, and Håvard Rue. 2013.
“Bayesian Computing with INLA: New
Features.” Computational Statistics and Data Analysis
67: 68–83.
Meschiari, Stefano. 2022.
Latex2exp: Use LaTeX Expressions in
Plots.
https://CRAN.R-project.org/package=latex2exp.
Müller, Kirill. 2020.
here: A Simpler
Way to Find Your Files.
https://CRAN.R-project.org/package=here.
Pebesma, Edzer. 2018.
“Simple Features for R:
Standardized Support for Spatial Vector Data.”
The R Journal 10 (1): 439–46.
https://doi.org/10.32614/RJ-2018-009.
Pebesma, Edzer J., and Roger Bivand. 2005.
“Classes and Methods
for Spatial Data in R.” R News 5 (2): 9–13.
https://CRAN.R-project.org/doc/Rnews/.
Pebesma, Edzer, and Roger Bivand. 2023.
Spatial
Data Science: With applications in R.
Chapman and
Hall/CRC.
https://doi.org/10.1201/9780429459016.
Pedersen, Thomas Lin. 2024.
patchwork:
The Composer of Plots.
https://CRAN.R-project.org/package=patchwork.
R Core Team. 2024a.
R: A Language and Environment for
Statistical Computing. Vienna, Austria: R Foundation for
Statistical Computing.
https://www.R-project.org/.
———. 2024b.
R: A Language and Environment for
Statistical Computing. Vienna, Austria: R Foundation for
Statistical Computing.
https://www.R-project.org/.
Rue, Håvard, Sara Martino, and Nicholas Chopin. 2009. “Approximate
Bayesian Inference for Latent Gaussian Models
Using Integrated Nested Laplace Approximations (with
Discussion).” Journal of the Royal Statistical Society B
71: 319–92.
Rue, Håvard, Andrea I. Riebler, Sigrunn H. Sørbye, Janine B. Illian,
Daniel P. Simpson, and Finn K. Lindgren. 2017.
“Bayesian Computing
with INLA: A Review.” Annual
Reviews of Statistics and Its Applications 4 (March): 395–421.
http://arxiv.org/abs/1604.00860.
Sievert, Carson. 2020.
Interactive Web-Based Data Visualization with
r, Plotly, and Shiny. Chapman; Hall/CRC.
https://plotly-r.com.
Verbosio, Fabio, Arne De Coninck, Drosos Kourounis, and Olaf Schenk.
2017.
“Enhancing the Scalability of Selected Inversion
Factorization Algorithms in Genomic Prediction.” Journal of
Computational Science 22 (Supplement C): 99–108.
https://doi.org/10.1016/j.jocs.2017.08.013.
Wickham, Hadley. 2007.
“Reshaping Data with the reshape Package.” Journal of
Statistical Software 21 (12): 1–20.
http://www.jstatsoft.org/v21/i12/.
Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy
D’Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019.
“Welcome to the tidyverse.”
Journal of Open Source Software 4 (43): 1686.
https://doi.org/10.21105/joss.01686.
Wickham, Hadley, Thomas Lin Pedersen, and Dana Seidel. 2023.
scales: Scale Functions for Visualization.
https://CRAN.R-project.org/package=scales.
Wilke, Claus O. 2024.
cowplot:
Streamlined Plot Theme and Plot Annotations for “ggplot2”.
https://CRAN.R-project.org/package=cowplot.
Wilke, Claus O., and Brenton M. Wiernik. 2022.
ggtext: Improved Text Rendering Support for
“ggplot2”.
https://CRAN.R-project.org/package=ggtext.
Xie, Yihui. 2014. “knitr: A
Comprehensive Tool for Reproducible Research in R.”
In Implementing Reproducible Computational Research, edited by
Victoria Stodden, Friedrich Leisch, and Roger D. Peng. Chapman;
Hall/CRC.
———. 2015.
Dynamic Documents with R and Knitr. 2nd
ed. Boca Raton, Florida: Chapman; Hall/CRC.
https://yihui.org/knitr/.
———. 2024.
knitr: A General-Purpose
Package for Dynamic Report Generation in r.
https://yihui.org/knitr/.
Xie, Yihui, J. J. Allaire, and Garrett Grolemund. 2018.
R Markdown:
The Definitive Guide. Boca Raton, Florida: Chapman; Hall/CRC.
https://bookdown.org/yihui/rmarkdown.
Xie, Yihui, Christophe Dervieux, and Emily Riederer. 2020.
R
Markdown Cookbook. Boca Raton, Florida: Chapman; Hall/CRC.
https://bookdown.org/yihui/rmarkdown-cookbook.
Yuan, Yuan, Bachl, Fabian E., Lindgren, Finn, Borchers, et al. 2017.
“Point Process Models for Spatio-Temporal Distance Sampling Data
from a Large-Scale Survey of Blue Whales.” Ann. Appl.
Stat. 11 (4): 2270–97.
https://doi.org/10.1214/17-AOAS1078.
LS0tCnRpdGxlOiAiTW9kZWwgcHJvcGVydGllcyAoJFxcbnUkIG5vbi1maXhlZCkiCmRhdGU6ICJDcmVhdGVkOiAwNS0wNy0yMDI0LiBMYXN0IG1vZGlmaWVkOiBgciBmb3JtYXQoU3lzLnRpbWUoKSwgJyVkLSVtLSVZLicpYCIKb3V0cHV0OgogIGh0bWxfZG9jdW1lbnQ6CiAgICBtYXRoamF4OiAiaHR0cHM6Ly9jZG4uanNkZWxpdnIubmV0L25wbS9tYXRoamF4QDMvZXM1L3RleC1tbWwtY2h0bWwuanMiCiAgICBoaWdobGlnaHQ6IHB5Z21lbnRzCiAgICB0aGVtZTogZmxhdGx5CiAgICBjb2RlX2ZvbGRpbmc6IHNob3cgIyBjbGFzcy5zb3VyY2UgPSAiZm9sZC1oaWRlIiB0byBoaWRlIGNvZGUgYW5kIGFkZCBhIGJ1dHRvbiB0byBzaG93IGl0CiAgICAjIGRmX3ByaW50OiBwYWdlZAogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6CiAgICAgIGNvbGxhcHNlZDogdHJ1ZQogICAgICBzbW9vdGhfc2Nyb2xsOiB0cnVlCiAgICBudW1iZXJfc2VjdGlvbnM6IGZhbHNlCiAgICBmaWdfY2FwdGlvbjogdHJ1ZQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQphbHdheXNfYWxsb3dfaHRtbDogdHJ1ZQpiaWJsaW9ncmFwaHk6IAogIC0gcmVmZXJlbmNlcy5iaWIKICAtIGdyYXRlZnVsLXJlZnMuYmliCmhlYWRlci1pbmNsdWRlczoKICAtIFxuZXdjb21tYW5ke1xhcn17XG1hdGhiYntSfX0KICAtIFxuZXdjb21tYW5ke1xsbGF2fVsxXXtcbGVmdFx7IzFccmlnaHRcfX0KICAtIFxuZXdjb21tYW5ke1xwYXJlfVsxXXtcbGVmdCgjMVxyaWdodCl9CiAgLSBcbmV3Y29tbWFuZHtcTmNhbH17XG1hdGhjYWx7Tn19CiAgLSBcbmV3Y29tbWFuZHtcVmNhbH17XG1hdGhjYWx7Vn19CiAgLSBcbmV3Y29tbWFuZHtcRWNhbH17XG1hdGhjYWx7RX19CiAgLSBcbmV3Y29tbWFuZHtcV2NhbH17XG1hdGhjYWx7V319Ci0tLQoKYGBge3IgeGFyaW5nYW5FeHRyYS1jbGlwYm9hcmQsIGVjaG8gPSBGQUxTRX0KaHRtbHRvb2xzOjp0YWdMaXN0KAogIHhhcmluZ2FuRXh0cmE6OnVzZV9jbGlwYm9hcmQoCiAgICBidXR0b25fdGV4dCA9ICI8aSBjbGFzcz1cImZhLXNvbGlkIGZhLWNsaXBib2FyZFwiIHN0eWxlPVwiY29sb3I6ICMwMDAwOEJcIj48L2k+IiwKICAgIHN1Y2Nlc3NfdGV4dCA9ICI8aSBjbGFzcz1cImZhIGZhLWNoZWNrXCIgc3R5bGU9XCJjb2xvcjogIzkwQkU2RFwiPjwvaT4iLAogICAgZXJyb3JfdGV4dCA9ICI8aSBjbGFzcz1cImZhIGZhLXRpbWVzLWNpcmNsZVwiIHN0eWxlPVwiY29sb3I6ICNGOTQxNDRcIj48L2k+IgogICksCiAgcm1hcmtkb3duOjpodG1sX2RlcGVuZGVuY3lfZm9udF9hd2Vzb21lKCkKKQpgYGAKCgpgYGB7Y3NzLCBlY2hvID0gRkFMU0V9CmJvZHkgLm1haW4tY29udGFpbmVyIHsKICBtYXgtd2lkdGg6IDEwMCUgIWltcG9ydGFudDsKICB3aWR0aDogMTAwJSAhaW1wb3J0YW50Owp9CmJvZHkgewogIG1heC13aWR0aDogMTAwJSAhaW1wb3J0YW50Owp9Cgpib2R5LCB0ZCB7CiAgIGZvbnQtc2l6ZTogMTZweDsKfQpjb2RlLnJ7CiAgZm9udC1zaXplOiAxNHB4Owp9CnByZSB7CiAgZm9udC1zaXplOiAxNHB4Cn0KLmN1c3RvbS1ib3ggewogIGJhY2tncm91bmQtY29sb3I6ICNmNWY3ZmE7IC8qIExpZ2h0IGdyZXktYmx1ZSBiYWNrZ3JvdW5kICovCiAgYm9yZGVyLWNvbG9yOiAjZTFlOGVkOyAvKiBMaWdodCBib3JkZXIgY29sb3IgKi8KICBjb2xvcjogIzJjM2U1MDsgLyogRGFyayB0ZXh0IGNvbG9yICovCiAgcGFkZGluZzogMTVweDsgLyogUGFkZGluZyBpbnNpZGUgdGhlIGJveCAqLwogIGJvcmRlci1yYWRpdXM6IDVweDsgLyogUm91bmRlZCBjb3JuZXJzICovCiAgbWFyZ2luLWJvdHRvbTogMjBweDsgLyogU3BhY2luZyBiZWxvdyB0aGUgYm94ICovCn0KLmNhcHRpb24gewogIG1hcmdpbjogYXV0bzsKICB0ZXh0LWFsaWduOiBjZW50ZXI7CiAgbWFyZ2luLWJvdHRvbTogMjBweDsgLyogU3BhY2luZyBiZWxvdyB0aGUgYm94ICovCn0KYGBgCgoKR28gYmFjayB0byB0aGUgW0Fib3V0IHBhZ2VdKGFib3V0Lmh0bWwpLiBUbyBzZWUgaG93IHRoZSBjb3ZhcmlhbmNlIGZ1bmN0aW9uIGNoYW5nZXMgd2hlbiB0aGUgbG9jYXRpb24gY2hhbmdlcywgZ28gdG8gW21vZGVsX3Byb3BlcnRpZXMxLmh0bWxdKG1vZGVsX3Byb3BlcnRpZXMxLmh0bWwpLgoKOjo6IHsuY3VzdG9tLWJveH0KVGhpcyB2aWduZXR0ZSBpbGx1c3RyYXRlcyBob3cgb3VyIHByb3Bvc2VkIGFwcHJvYWNoIGFsbG93cyBmb3IgR2F1c3NpYW4gcHJvY2Vzc2VzIHdpdGggZ2VuZXJhbCBzbW9vdGhuZXNzIGFuZCBub24tc3RhdGlvbmFyeSBjb3ZhcmlhbmNlIG9uIGFueSBjb21wYWN0IG1ldHJpYyBncmFwaC4gUmVjYWxsIHRoYXQgdGhlc2UgcHJvY2Vzc2VzIGFyZSBkZWZpbmVkIGFzIHNvbHV0aW9ucyB0byAKXGJlZ2lue2VxdWF0aW9ufVxsYWJlbHtTUERFfVx0YWd7U1BERX0KKFxrYXBwYV4yIC0gXERlbHRhX3tcR2FtbWF9KV57XGFscGhhLzJ9KFx0YXUgdSkgPSBcV2NhbCwgXHF1YWQgXHRleHR7b24gJFxHYW1tYSR9LCAKXGVuZHtlcXVhdGlvbn0Kd2hlcmUgJFxEZWx0YV97XEdhbW1hfSQgaXMgdGhlIHNvLWNhbGxlZCBLaXJjaGhvZmYtLUxhcGxhY2lhbiwgJFx0YXUoXGNkb3QpJCBhbmQgJFxrYXBwYShcY2RvdCkkIGFyZSBzcGF0aWFsbHkgdmFyeWluZyBmdW5jdGlvbnMgdGhhdCBjb250cm9sIHRoZSBtYXJnaW5hbCB2YXJpYW5jZSBhbmQgcHJhY3RpY2FsIGNvcnJlbGF0aW9uIHJhbmdlLCByZXNwZWN0aXZlbHksICRcYWxwaGE+MS8yJCBjb250cm9scyB0aGUgc21vb3RobmVzcywgYW5kICRcV2NhbCQgaXMgR2F1c3NpYW4gd2hpdGUgbm9pc2UgZGVmaW5lZCBvbiBhIHByb2JhYmlsaXR5IHNwYWNlICRccGFyZXtcT21lZ2EsXG1hdGhjYWx7Rn0sXG1hdGhiYntQfX0kLgo6OjoKCgpCZWxvdyB3ZSBzZXQgc29tZSBnbG9iYWwgb3B0aW9ucyBmb3IgYWxsIGNvZGUgY2h1bmtzIGluIHRoaXMgZG9jdW1lbnQuCgoKYGBge3J9CiMgU2V0IHNlZWQgZm9yIHJlcHJvZHVjaWJpbGl0eQpzZXQuc2VlZCgxOTgyKSAKIyBTZXQgZ2xvYmFsIG9wdGlvbnMgZm9yIGFsbCBjb2RlIGNodW5rcwprbml0cjo6b3B0c19jaHVuayRzZXQoCiAgIyBEaXNhYmxlIG1lc3NhZ2VzIHByaW50ZWQgYnkgUiBjb2RlIGNodW5rcwogIG1lc3NhZ2UgPSBGQUxTRSwgICAgCiAgIyBEaXNhYmxlIHdhcm5pbmdzIHByaW50ZWQgYnkgUiBjb2RlIGNodW5rcwogIHdhcm5pbmcgPSBGQUxTRSwgICAgCiAgIyBTaG93IFIgY29kZSB3aXRoaW4gY29kZSBjaHVua3MgaW4gb3V0cHV0CiAgZWNobyA9IFRSVUUsICAgICAgICAKICAjIEluY2x1ZGUgYm90aCBSIGNvZGUgYW5kIGl0cyByZXN1bHRzIGluIG91dHB1dAogIGluY2x1ZGUgPSBUUlVFLCAgICAgCiAgIyBFdmFsdWF0ZSBSIGNvZGUgY2h1bmtzCiAgZXZhbCA9IFRSVUUsICAgICAgIAogICMgRW5hYmxlIGNhY2hpbmcgb2YgUiBjb2RlIGNodW5rcyBmb3IgZmFzdGVyIHJlbmRlcmluZwogIGNhY2hlID0gRkFMU0UsICAgICAgCiAgIyBBbGlnbiBmaWd1cmVzIGluIHRoZSBjZW50ZXIgb2YgdGhlIG91dHB1dAogIGZpZy5hbGlnbiA9ICJjZW50ZXIiLAogICMgRW5hYmxlIHJldGluYSBkaXNwbGF5IGZvciBoaWdoLXJlc29sdXRpb24gZmlndXJlcwogIHJldGluYSA9IDIsCiAgIyBTaG93IGVycm9ycyBpbiB0aGUgb3V0cHV0IGluc3RlYWQgb2Ygc3RvcHBpbmcgcmVuZGVyaW5nCiAgZXJyb3IgPSBUUlVFLAogICMgRG8gbm90IGNvbGxhcHNlIGNvZGUgYW5kIG91dHB1dCBpbnRvIGEgc2luZ2xlIGJsb2NrCiAgY29sbGFwc2UgPSBGQUxTRQopCiMgU3RhcnQgdGhlIGZpZ3VyZSBjb3VudGVyCmZpZ19jb3VudCA8LSAwCiMgRGVmaW5lIHRoZSBjYXB0aW9uZXIgZnVuY3Rpb24KY2FwdGlvbmVyIDwtIGZ1bmN0aW9uKGNhcHRpb24pIHsKICBmaWdfY291bnQgPDwtIGZpZ19jb3VudCArIDEKICBwYXN0ZTAoIkZpZ3VyZSAiLCBmaWdfY291bnQsICI6ICIsIGNhcHRpb24pCn0KIyBEZWZpbmUgdGhlIGZ1bmN0aW9uIHRvIHRydW5jYXRlIGEgbnVtYmVyIHRvIHR3byBkZWNpbWFsIHBsYWNlcwp0cnVuY2F0ZV90b190d28gPC0gZnVuY3Rpb24oeCkgewogIGZsb29yKHggKiAxMDApIC8gMTAwCn0KYGBgCgoKQmVsb3cgd2UgbG9hZCB0aGUgbmVjZXNzYXJ5IGxpYnJhcmllcyBhbmQgZGVmaW5lIHRoZSBhdXhpbGlhcnkgZnVuY3Rpb25zLgoKYGBge3J9CmxpYnJhcnkoclNQREUpCmxpYnJhcnkoTWV0cmljR3JhcGgpCgpsaWJyYXJ5KGRwbHlyKQpsaWJyYXJ5KHBsb3RseSkKbGlicmFyeShzY2FsZXMpCmxpYnJhcnkocGF0Y2h3b3JrKQpsaWJyYXJ5KHRpZHlyKQoKbGlicmFyeShoZXJlKQpsaWJyYXJ5KHJtYXJrZG93bikKIyBDaXRlIGFsbCBsb2FkZWQgcGFja2FnZXMKbGlicmFyeShncmF0ZWZ1bCkgCmBgYAoKQmVsb3cgd2UgZGVmaW5lIGZ1bmN0aW9uIGBjb21wdXRlX3BjcigpYCwgd2hpY2ggY29tcHV0ZXMgdGhlIHByYWN0aWNhbCBjb3JyZWxhdGlvbi4gSXQgcmVjZWl2ZXMgdGhlIG91dHB1dCBvZiB0aGUgW2ByU1BERTo6c3BkZS5tYXRlcm4ub3BlcmF0b3JzKClgXShodHRwczovL2RhdmlkYm9saW4uZ2l0aHViLmlvL3JTUERFL3JlZmVyZW5jZS9zcGRlLm1hdGVybi5vcGVyYXRvcnMuaHRtbCkgZnVuY3Rpb24gKHdoZW4gZXZhbHVhdGVkIG9uIGNvbXBhdGlibGUgcGFyYW1ldGVycykgYW5kIGEgdGhyZXNob2xkIGBjb3JfdGhyZXNob2xkYC4gVXNpbmcgdGhlIGNvcnJlbGF0aW9uIG1hdHJpeCBhbmQgdGhlIGdlb2Rlc2ljIGRpc3RhbmNlIG1hdHJpeCwgZm9yIGVhY2ggcG9pbnQgaW4gdGhlIG1lc2gsIGl0IGNvbXB1dGVzIHRoZSBwcmFjdGljYWwgY29ycmVsYXRpb24gcmFuZ2UgYXMgdGhlIG1pbmltdW0gZ2VvZGVzaWMgZGlzdGFuY2Ugc3VjaCB0aGF0IHRoZSBjb3JyZWxhdGlvbiBpcyBiZWxvdyBhIGdpdmVuIHRocmVzaG9sZCBgY29yX3RocmVzaG9sZGAgKHVzdWFsbHkgZGVmaW5lZCBhcyAwLjEpLiBUaGUgZnVuY3Rpb24gcmV0dXJucyBhIHZlY3RvciB3aXRoIHRoZSBwcmFjdGljYWwgY29ycmVsYXRpb24gcmFuZ2UgZm9yIGVhY2ggcG9pbnQgaW4gdGhlIG1lc2guCgo8ZGl2IHN0eWxlPSJjb2xvcjogYmx1ZTsiPgoqKioqKioqKgoqKlByZXNzIHRoZSBTaG93IGJ1dHRvbiBiZWxvdyB0byByZXZlYWwgdGhlIGNvZGUuKioKCioqKioqKioqCjwvZGl2PgoKYGBge3IsIGNsYXNzLnNvdXJjZSA9ICJmb2xkLWhpZGUifQpjb21wdXRlX3BjciA8LSBmdW5jdGlvbihvcCwgY29yX3RocmVzaG9sZCkgewogIAogICMgQ29tcHV0ZSB0aGUgY292YXJpYW5jZSBtYXRyaXgKICBjb3ZfbWF0cml4IDwtIG9wJGNvdmFyaWFuY2VfbWVzaCgpIAogICMgQ29tcHV0ZSB0aGUgY29ycmVsYXRpb24gbWF0cml4CiAgY29yX21hdHJpeCA8LWNvdjJjb3IoY292X21hdHJpeCkKICAjIENvbXB1dGUgdGhlIGdlb2Rlc2ljIGRpc3RhbmNlIG1hdHJpeAogIG9wJGdyYXBoJGNvbXB1dGVfZ2VvZGlzdF9tZXNoKCkgCiAgIyBFeHRyYWN0IHRoZSBnZW9kZXNpYyBkaXN0YW5jZSBtYXRyaXgKICBkaXN0X21hdHJpeCA8LSBvcCRncmFwaCRtZXNoJGdlb19kaXN0IAogICMgSW5pdGlhbGl6ZSB0aGUgdmVjdG9yIHRvIHN0b3JlIHRoZSBwcmFjdGljYWwgY29ycmVsYXRpb24gcmFuZ2UKICBwY3IgPC0gbnVtZXJpYyhkaW0oY29yX21hdHJpeClbMV0pIAogIAogIHByb2Nlc3Nfcm93IDwtIGZ1bmN0aW9uKHJvd19pbmRleCkgewogICAgIyBGb3IgZWFjaCByb3dfaW5kZXgsIGNyZWF0ZSBhbiBhdXhpbGlhcnkgbWF0cml4IGF1eF9tYXQgd2l0aCB0aGUgY29ycmVsYXRpb24gYW5kIGdlb2Rlc2ljIGRpc3RhbmNlCiAgICBhdXhfbWF0IDwtIGNiaW5kKGNvcl9tYXRyaXhbcm93X2luZGV4LCBdLCBkaXN0X21hdHJpeFtyb3dfaW5kZXgsIF0pIAogICAgIyBPcmRlciB0aGUgYXV4aWxpYXJ5IG1hdHJpeCBieSB0aGUgZ2VvZGVzaWMgZGlzdGFuY2UKICAgIG9yZGVyZWRfYXV4X21hdCA8LSBhdXhfbWF0W29yZGVyKGF1eF9tYXRbLCAyXSksIF0gCiAgICAjIEZpbHRlciB0aGUgYXV4aWxpYXJ5IG9yZGVyZWQgbWF0cml4IGJ5IHRoZSBjb3JyZWxhdGlvbiB0aHJlc2hvbGQKICAgIGZpbHRlcmVkX2F1eF9tYXQgPC0gb3JkZXJlZF9hdXhfbWF0W29yZGVyZWRfYXV4X21hdFssMV0gPCBjb3JfdGhyZXNob2xkLCBdIAogICAgaWYgKG5yb3coZmlsdGVyZWRfYXV4X21hdCkgPiAwKSB7CiAgICAgICMgUmV0dXJuIHRoZSBtaW5pbXVtIGdlb2Rlc2ljIGRpc3RhbmNlIHN1Y2ggdGhhdCB0aGUgY29ycmVsYXRpb24gaXMgYmVsb3cgdGhlIHRocmVzaG9sZAogICAgICByZXR1cm4oZmlsdGVyZWRfYXV4X21hdFsxLCAyXSkgCiAgICB9IGVsc2UgewogICAgICAjIElmIHRoZSBjb25kaXRpb24gaXMgbm90IHNhdGlzZmllZCwgcmVjb3JkIHRoZSBtaW5pbXVtIGNvcnJlbGF0aW9uIHZhbHVlIGFuZCByZXR1cm4gYW4gZXJyb3IgbWVzc2FnZQogICAgICBtaW4gPC0gbWluKGF1eF9tYXRbLCAxXSkKICAgICAgc3RvcChwYXN0ZTAoIlRoZSBjb25kaXRpb24gY29yX21hdHJpeFtyb3dfaW5kZXgsIF0gPCBjb3JfdGhyZXNob2xkIGlzIG5vdCBzYXRpc2ZpZWQgZm9yIHJvd19pbmRleCA9ICIsIAogICAgICAgICAgICAgICAgICByb3dfaW5kZXgsICIuIEluY3JlYXNlIGNvcl90aHJlc2hvbGQuIFRoZSBtaW5pbXVtIHZhbHVlIG9mIGNvcl9tYXRyaXhbcm93X2luZGV4LCBdIGlzICIsCiAgICAgICAgICAgICAgICAgIG1pbikpCiAgICB9CiAgfQogIAogIHBjciA8LSBzYXBwbHkoMTpkaW0oY29yX21hdHJpeClbMV0sIHByb2Nlc3Nfcm93KQogIAogIHJldHVybihwY3IpCn0KYGBgCgoKQmVsb3cgd2UgYnVpbGQgdGhlIGBNZXRyaWNHcmFwaGAgcGFja2FnZSdzIGxvZ28gZ3JhcGggYW5kIHBsb3QgdGhlIG1lc2guCgpgYGB7ciwgZmlnLndpZHRoID0gNSwgZmlnLmhlaWdodCA9IDUsIGZpZy5jYXAgPSBjYXB0aW9uZXIoIk1lc2ggb2YgdGhlIE1ldHJpY0dyYXBoIHBhY2thZ2UncyBsb2dvLiIpfQojIFRoaXMgaXMgYSBmdW5jdGlvbiBmcm9tIE1ldHJpY0dyYXBoIHBhY2thZ2UgdGhhdCByZXR1cm5zIGEgbGlzdCBvZiBlZGdlcwplZGdlcyA8LSBsb2dvX2xpbmVzKCkgCiMgQ3JlYXRlIGEgbmV3IGdyYXBoIG9iamVjdApsb2dvX2dyYXBoIDwtIG1ldHJpY19ncmFwaCRuZXcoZWRnZXMgPSBlZGdlcywgcGVyZm9ybV9tZXJnZXMgPSBUUlVFKSAKIyBQcnVuZSB0aGUgdmVydGljZXMKI2xvZ29fZ3JhcGgkcHJ1bmVfdmVydGljZXMoKQojIEJ1aWxkIHRoZSBtZXNoCmxvZ29fZ3JhcGgkYnVpbGRfbWVzaChoID0gMC4wNSkgCiMgRXh0cmFjdCB0aGUgbWVzaCBsb2NhdGlvbnMgaW4gRXVjbGlkZWFuIGNvb3JkaW5hdGVzCnh5cG9pbnRzIDwtIGxvZ29fZ3JhcGgkbWVzaCRWCiMgQ3JlYXRlIGEgcGxvdCBvZiB0aGUgbWVzaApwbG90X21lc2ggPC0gbG9nb19ncmFwaCRwbG90KG1lc2ggPSBUUlVFKSArIAogIGdndGl0bGUoIk1lc2giKSArIAogIHRoZW1lX21pbmltYWwoKSArIAogIHRoZW1lKHRleHQgPSBlbGVtZW50X3RleHQoZmFtaWx5ID0gIlBhbGF0aW5vIikpCnByaW50KHBsb3RfbWVzaCkKYGBgCgojIE5vbi1zdGF0aW9uYXJ5IGZlYXR1cmVzCgpCZWxvdyB3ZSBkZWZpbmUgJFx0YXUoXGNkb3QpJCAoYG1vZGVsX2Zvcl90YXVgKSBhbmQgJFxrYXBwYShcY2RvdCkkIChgbW9kZWxfZm9yX2thcHBhYCkgaW4gXGVxcmVme1NQREV9IGFzICRcdGF1KHMpID0gXGV4cCgwLjA1XGNkb3QoeChzKS15KHMpKSkkIGFuZCAkXGthcHBhKHMpID0gXGV4cCgwLjFcY2RvdCh4KHMpLXkocykpKSQsIHdoZXJlICQoeChzKSx5KHMpKSQgYXJlIEV1Y2xpZGVhbiBjb29yZGluYXRlcyBvbiB0aGUgcGxhbmUuIFRoZXNlIGNob2ljZXMgbWFrZSAkXHRhdShcY2RvdCkkIGFuZCAkXGthcHBhKFxjZG90KSQgbGFyZ2UgaW4gdGhlIGJvdHRvbS1yaWdodCByZWdpb24gb2YgdGhlIGBNZXRyaWNHcmFwaGAgcGFja2FnZSdzIGxvZ28sIGFzIHNob3duIGluIEZpZ3VyZSAyLgoKYGBge3J9CiMgRGVmaW5lIGFuIGF1eGlsaWFyeSB2YXJpYWJsZQphdXggPC0gMC4xKih4eXBvaW50c1ssMV0gLSB4eXBvaW50c1ssMl0pCiMgRGVmaW5lIHRoZSBtYXRyaWNlcyBCLnRhdSBhbmQgQi5rYXBwYQpCLnRhdSA8LSBjYmluZCgwLCAxLCAwLCAwLjUqYXV4LCAwKQpCLmthcHBhIDwtIGNiaW5kKDAsIDAsIDEsIDAsIGF1eCkKIyBMb2ctcmVncmVzc2lvbiBjb2VmZmljaWVudHMKdGhldGEgPC0gYygwLCAwLCAxLCAxKSAKIyBEZWZpbmUgdGhlIG1vZGVscyBmb3IgdGF1IGFuZCBrYXBwYQptb2RlbF9mb3JfdGF1IDwtIGV4cChCLnRhdVssLTFdJSoldGhldGEpCm1vZGVsX2Zvcl9rYXBwYSA8LSBleHAoQi5rYXBwYVssLTFdJSoldGhldGEpCmBgYAoKQmVsb3cgd2UgY29uc2lkZXIgJFxhbHBoYSA9IDAuOSwgMS4zLCAyLjEkIGFuZCBjb21wdXRlIHRoZSBjb3ZhcmlhbmNlIGJldHdlZW4gb25lIHBvaW50LCBzYXkgdGhlICQyODkkLXRoIHBvaW50LCBhbmQgYWxsIG90aGVyIHBvaW50cyBvbiB0aGUgbWVzaC4gCgpgYGB7cn0KIyBDaG9vc2UgYSByb3cgbnVtYmVyLCBhbnkgYmV0d2VlbiAxIGFuZCBkaW0oZXN0X2Nvdl9tYXRyaXgxKVsxXQpyb3dudW1iZXIgPC0gMjg5IAojIENob29zZSBhbHBoYQpudTEgPC0gMC40CmFscGhhMSA8LSBudTEgKyAxLzIKIyBDb21wdXRlIHRoZSBvcGVyYXRvcgpvcDEgPC0gclNQREU6OnNwZGUubWF0ZXJuLm9wZXJhdG9ycyhncmFwaCA9IGxvZ29fZ3JhcGgsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIEIudGF1ID0gQi50YXUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgQi5rYXBwYSA9ICBCLmthcHBhLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHBhcmFtZXRlcml6YXRpb24gPSAic3BkZSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdGhldGEgPSB0aGV0YSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYWxwaGEgPSBhbHBoYTEpCiMgQ29tcHV0ZSB0aGUgY292YXJpYW5jZSBiZXR3ZWVuIHRoZSByb3dudW1iZXItdGggcG9pbnQgYW5kIGFsbCBvdGhlciBwb2ludHMKZXN0X2Nvdl9tYXRyaXgxIDwtIG9wMSRjb3ZhcmlhbmNlX21lc2goKQpyb3dmcm9tY292MSA8LSBlc3RfY292X21hdHJpeDFbcm93bnVtYmVyLCBdCiMgQ2hvb3NlIGFscGhhCm51MiA8LSAwLjgKYWxwaGEyIDwtIG51MiArIDEvMgojIENvbXB1dGUgdGhlIG9wZXJhdG9yCm9wMiA8LSByU1BERTo6c3BkZS5tYXRlcm4ub3BlcmF0b3JzKGdyYXBoID0gbG9nb19ncmFwaCwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgQi50YXUgPSBCLnRhdSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBCLmthcHBhID0gIEIua2FwcGEsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGFyYW1ldGVyaXphdGlvbiA9ICJzcGRlIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0aGV0YSA9IHRoZXRhLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBhbHBoYSA9IGFscGhhMikKIyBDb21wdXRlIHRoZSBjb3ZhcmlhbmNlIGJldHdlZW4gdGhlIHJvd251bWJlci10aCBwb2ludCBhbmQgYWxsIG90aGVyIHBvaW50cwplc3RfY292X21hdHJpeDIgPC0gb3AyJGNvdmFyaWFuY2VfbWVzaCgpCnJvd2Zyb21jb3YyIDwtIGVzdF9jb3ZfbWF0cml4Mltyb3dudW1iZXIsIF0KIyBDaG9vc2UgYWxwaGEKbnUzIDwtIDEuNgphbHBoYTMgPC0gbnUzICsgMS8yCiMgQ29tcHV0ZSB0aGUgb3BlcmF0b3IKb3AzIDwtIHJTUERFOjpzcGRlLm1hdGVybi5vcGVyYXRvcnMoZ3JhcGggPSBsb2dvX2dyYXBoLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBCLnRhdSA9IEIudGF1LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIEIua2FwcGEgPSAgQi5rYXBwYSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwYXJhbWV0ZXJpemF0aW9uID0gInNwZGUiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRoZXRhID0gdGhldGEsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGFscGhhID0gYWxwaGEzKQojIENvbXB1dGUgdGhlIGNvdmFyaWFuY2UgYmV0d2VlbiB0aGUgcm93bnVtYmVyLXRoIHBvaW50IGFuZCBhbGwgb3RoZXIgcG9pbnRzCmVzdF9jb3ZfbWF0cml4MyA8LSBvcDMkY292YXJpYW5jZV9tZXNoKCkKcm93ZnJvbWNvdjMgPC0gZXN0X2Nvdl9tYXRyaXgzW3Jvd251bWJlciwgXQpgYGAKCgojIENvdmFyaWFuY2UgcGxvdHMKCkJlbG93IHdlIHBsb3QgdGhlIGNvdmFyaWFuY2UgZnVuY3Rpb25zICRyX1xudShcY2RvdCk9XHRleHR7Q292fSh1KHNfMCksdShcY2RvdCkpJCBmb3IgZGlmZmVyZW50IHNtb290aG5lc3MgcGFyYW1ldGVyICRcbnUkIG9uIHRoZSBgTWV0cmljR3JhcGhgIHBhY2thZ2UncyBsb2dvLiAKCgo8ZGl2IHN0eWxlPSJjb2xvcjogYmx1ZTsiPgoqKioqKioqKgoqKlByZXNzIHRoZSBTaG93IGJ1dHRvbiBiZWxvdyB0byByZXZlYWwgdGhlIGNvZGUuKioKCioqKioqKioqCjwvZGl2PgoKYGBge3IsIGZpZy53aWR0aCA9IDEzLjgzLCBmaWcuaGVpZ2h0ID0gNC41LCBmaWcuY2FwID0gY2FwdGlvbmVyKCJFeGFtcGxlIG9mIGNvdmFyaWFuY2UgZnVuY3Rpb25zICRyX1xcbnUoXFxjZG90KSQgZm9yIGRpZmZlcmVudCBzbW9vdGhuZXNzIHBhcmFtZXRlciAkXFxudSQgb24gdGhlIGBNZXRyaWNHcmFwaGAgcGFja2FnZSdzIGxvZ28uIiksIGNsYXNzLnNvdXJjZSA9ICJmb2xkLWhpZGUifQojIENyZWF0ZSBhIHBsb3QgZm9yIHRoZSBjb3ZhcmlhbmNlIGJldHdlZW4gcG9pbnQxIGFuZCBhbGwgb3RoZXIgcG9pbnRzCmMxIDwtIGxvZ29fZ3JhcGgkcGxvdF9mdW5jdGlvbihYID0gcm93ZnJvbWNvdjEsIHZlcnRleF9zaXplID0gMCkgKwogIGdndGl0bGUobGF0ZXgyZXhwOjpUZVgoIiRyX3swLjR9JCIpKSArCiAgdGhlbWVfbWluaW1hbCgpICsKICB0aGVtZSh0ZXh0ID0gZWxlbWVudF90ZXh0KGZhbWlseSA9ICJQYWxhdGlubyIpLAogICAgICAgIHBsb3QudGl0bGUgPSBlbGVtZW50X3RleHQoc2l6ZSA9IDEyKSkgKwogIGFubm90YXRlKCJwb2ludCIsIHggPSB4eXBvaW50c1tyb3dudW1iZXIsMV0sIHkgPSB4eXBvaW50c1tyb3dudW1iZXIsMl0sIHNpemUgPSAxLCBjb2xvciA9ICJibGFjayIpICsKICBhbm5vdGF0ZSgidGV4dCIsIHggPSB4eXBvaW50c1tyb3dudW1iZXIsMV0gLSAwLjgsIHkgPSB4eXBvaW50c1tyb3dudW1iZXIsMl0sIGxhYmVsID0gInNbMF0iLCBwYXJzZSA9IFRSVUUsIHNpemUgPSAzLCBoanVzdCA9IDAsIGNvbG9yID0gImJsYWNrIikKIyBDcmVhdGUgYSBwbG90IGZvciB0aGUgY292YXJpYW5jZSBiZXR3ZWVuIHBvaW50MiBhbmQgYWxsIG90aGVyIHBvaW50cwpjMiA8LSBsb2dvX2dyYXBoJHBsb3RfZnVuY3Rpb24oWCA9IHJvd2Zyb21jb3YyLCB2ZXJ0ZXhfc2l6ZSA9IDApICsKICBnZ3RpdGxlKGxhdGV4MmV4cDo6VGVYKCIkcl97MC44fSQiKSkgKwogIHRoZW1lX21pbmltYWwoKSArCiAgdGhlbWUodGV4dCA9IGVsZW1lbnRfdGV4dChmYW1pbHkgPSAiUGFsYXRpbm8iKSwKICAgICAgICBwbG90LnRpdGxlID0gZWxlbWVudF90ZXh0KHNpemUgPSAxMikpICsKICBhbm5vdGF0ZSgicG9pbnQiLCB4ID0geHlwb2ludHNbcm93bnVtYmVyLDFdLCB5ID0geHlwb2ludHNbcm93bnVtYmVyLDJdLCBzaXplID0gMSwgY29sb3IgPSAiYmxhY2siKSArCiAgYW5ub3RhdGUoInRleHQiLCB4ID0geHlwb2ludHNbcm93bnVtYmVyLDFdIC0gMC44LCB5ID0geHlwb2ludHNbcm93bnVtYmVyLDJdLCBsYWJlbCA9ICJzWzBdIiwgcGFyc2UgPSBUUlVFLCBzaXplID0gMywgaGp1c3QgPSAwLCBjb2xvciA9ICJibGFjayIpCiMgQ3JlYXRlIGEgcGxvdCBmb3IgdGhlIGNvdmFyaWFuY2UgYmV0d2VlbiBwb2ludDMgYW5kIGFsbCBvdGhlciBwb2ludHMKYzMgPC0gbG9nb19ncmFwaCRwbG90X2Z1bmN0aW9uKFggPSByb3dmcm9tY292MywgdmVydGV4X3NpemUgPSAwKSArCiAgZ2d0aXRsZShsYXRleDJleHA6OlRlWCgiJHJfezEuNn0kIikpICsKICB0aGVtZV9taW5pbWFsKCkgKwogIHRoZW1lKHRleHQgPSBlbGVtZW50X3RleHQoZmFtaWx5ID0gIlBhbGF0aW5vIiksCiAgICAgICAgcGxvdC50aXRsZSA9IGVsZW1lbnRfdGV4dChzaXplID0gMTIpKSArCiAgYW5ub3RhdGUoInBvaW50IiwgeCA9IHh5cG9pbnRzW3Jvd251bWJlciwxXSwgeSA9IHh5cG9pbnRzW3Jvd251bWJlciwyXSwgc2l6ZSA9IDEsIGNvbG9yID0gImJsYWNrIikgKwogIGFubm90YXRlKCJ0ZXh0IiwgeCA9IHh5cG9pbnRzW3Jvd251bWJlciwxXSAtIDAuOCwgeSA9IHh5cG9pbnRzW3Jvd251bWJlciwyXSwgbGFiZWwgPSAic1swXSIsIHBhcnNlID0gVFJVRSwgc2l6ZSA9IDMsIGhqdXN0ID0gMCwgY29sb3IgPSAiYmxhY2siKQojIENvbWJpbmUgdGhlIHRocmVlIHBsb3RzCmNzIDwtIGMxICsgYzIgKyBjMwojIFNhdmUgdGhlIGNvbWJpbmVkIHBsb3QKZ2dzYXZlKGhlcmUoImRhdGFfZmlsZXMvY292X3Bsb3RzX2RpZmZfbnUucG5nIiksIHBsb3QgPSBjcywgd2lkdGggPSAxMy44MywgaGVpZ2h0ID0gNC41LCBkcGkgPSAzMDApCiMgUHJpbnQgdGhlIGNvbWJpbmVkIHBsb3QKcHJpbnQoY3MpCmBgYAoKCkJlbG93IHdlIHNob3cgM0QgcGxvdHMgb2YgdGhlIGNvdmFyaWFuY2UgZnVuY3Rpb25zICRyX1xudShcY2RvdCk9XHRleHR7Q292fSh1KHNfMCksdShcY2RvdCkpJCBmb3IgZGlmZmVyZW50IHNtb290aG5lc3MgcGFyYW1ldGVyICRcbnUkIG9uIHRoZSBgTWV0cmljR3JhcGhgIHBhY2thZ2UncyBsb2dvLiAKCjxkaXYgc3R5bGU9ImNvbG9yOiBibHVlOyI+CioqKioqKioqCioqUHJlc3MgdGhlIFNob3cgYnV0dG9uIGJlbG93IHRvIHJldmVhbCB0aGUgY29kZS4qKgoKKioqKioqKioKPC9kaXY+CgpgYGB7ciwgY2xhc3Muc291cmNlID0gImZvbGQtaGlkZSJ9CnAxIDwtIGxvZ29fZ3JhcGgkcGxvdF9mdW5jdGlvbihYID0gcm93ZnJvbWNvdjEsIHZlcnRleF9zaXplID0gMSwgcGxvdGx5ID0gVFJVRSwgZWRnZV9jb2xvciA9ICJibGFjayIsIGVkZ2Vfd2lkdGggPSAzLCBsaW5lX2NvbG9yID0gImJsdWUiLCBsaW5lX3dpZHRoID0gMykKcDIgPC0gbG9nb19ncmFwaCRwbG90X2Z1bmN0aW9uKFggPSByb3dmcm9tY292MiwgdmVydGV4X3NpemUgPSAxLCBwbG90bHkgPSBUUlVFLCBlZGdlX2NvbG9yID0gImJsYWNrIiwgZWRnZV93aWR0aCA9IDMsIGxpbmVfY29sb3IgPSAicmVkIiwgbGluZV93aWR0aCA9IDMsIHAgPSBwMSkKcDMgPC0gbG9nb19ncmFwaCRwbG90X2Z1bmN0aW9uKFggPSByb3dmcm9tY292MywgdmVydGV4X3NpemUgPSAxLCBwbG90bHkgPSBUUlVFLCBlZGdlX2NvbG9yID0gImJsYWNrIiwgZWRnZV93aWR0aCA9IDMsIGxpbmVfY29sb3IgPSAiZGFya2dyZWVuIiwgbGluZV93aWR0aCA9IDMsIHAgPSBwMikKcCA8LSBwMyAlPiUKICBjb25maWcobWF0aGpheCA9ICdjZG4nKSAlPiUKICBsYXlvdXQoZm9udCA9IGxpc3QoZmFtaWx5ID0gIlBhbGF0aW5vIiksCiAgICAgICAgIHNob3dsZWdlbmQgPSBGQUxTRSwKICAgICAgICAgc2NlbmUgPSBsaXN0KAogICAgICAgICAgIGFzcGVjdHJhdGlvID0gbGlzdCh4ID0gMS41LCB5ID0gMS41LCB6ID0gMS41KSwKICAgICAgICAgICBjYW1lcmEgPSBsaXN0KAogICAgICBleWUgPSBsaXN0KHggPSAzLCB5ID0gLTIsIHogPSAwLjUpLCAgIyBBZGp1c3QgdGhlIHZpZXdwb2ludAogICAgICBjZW50ZXIgPSBsaXN0KHggPSAwLCB5ID0gMCwgeiA9IDApKSwgICAgICMgRm9jdXMgcG9pbnQKICAgICAgICAgICBhbm5vdGF0aW9ucyA9IGxpc3QoCiAgICAgICAgICAgICBsaXN0KAogICAgICAgICAgICAgICB4ID0gMywgeSA9IDQsIHogPSAwLjM4LAogICAgICAgICAgICAgICB0ZXh0ID0gVGVYKCJcXGFscGhhIiksCiAgICAgICAgICAgICAgIHRleHRhbmdsZSA9IDAsIGF4ID0gNjAsIGF5ID0gMCwKICAgICAgICAgICAgICAgZm9udCA9IGxpc3QoY29sb3IgPSAiYmxhY2siLCBzaXplID0gMTYpLAogICAgICAgICAgICAgICBhcnJvd2NvbG9yID0gIndoaXRlIiwgYXJyb3dzaXplID0gMSwgYXJyb3d3aWR0aCA9IDAuMSxhcnJvd2hlYWQgPSAxKSwKICAgICAgICAgICAgIGxpc3QoCiAgICAgICAgICAgICAgIHggPSAzLCB5ID0gNCwgeiA9IDAuMzUsCiAgICAgICAgICAgICAgIHRleHQgPSBUZVgocGFzdGUwKCJcXGJ1bGxldFxcbWJveHsgIiwgYWxwaGExLCAifSIpKSwKICAgICAgICAgICAgICAgdGV4dGFuZ2xlID0gMCwgYXggPSA2MCwgYXkgPSAwLAogICAgICAgICAgICAgICBmb250ID0gbGlzdChjb2xvciA9ICJibHVlIiwgc2l6ZSA9IDE2KSwKICAgICAgICAgICAgICAgYXJyb3djb2xvciA9ICJ3aGl0ZSIsIGFycm93c2l6ZSA9IDEsIGFycm93d2lkdGggPSAwLjEsYXJyb3doZWFkID0gMSksCiAgICAgICAgICAgICBsaXN0KAogICAgICAgICAgICAgICB4ID0gMywgeSA9IDQsIHogPSAwLjMzLAogICAgICAgICAgICAgICB0ZXh0ID0gVGVYKHBhc3RlMCgiXFxidWxsZXRcXG1ib3h7ICIsIGFscGhhMiwgIn0iKSksCiAgICAgICAgICAgICAgIHRleHRhbmdsZSA9IDAsIGF4ID0gNjAsIGF5ID0gMCwKICAgICAgICAgICAgICAgZm9udCA9IGxpc3QoY29sb3IgPSAicmVkIiwgc2l6ZSA9IDE2KSwKICAgICAgICAgICAgICAgYXJyb3djb2xvciA9ICJ3aGl0ZSIsIGFycm93c2l6ZSA9IDEsIGFycm93d2lkdGggPSAwLjEsYXJyb3doZWFkID0gMSksCiAgICAgICAgICAgICBsaXN0KAogICAgICAgICAgICAgICB4ID0gMywgeSA9IDQsIHogPSAwLjMxLAogICAgICAgICAgICAgICB0ZXh0ID0gVGVYKHBhc3RlMCgiXFxidWxsZXRcXG1ib3h7ICIsIGFscGhhMywgIn0iKSksCiAgICAgICAgICAgICAgIHRleHRhbmdsZSA9IDAsIGF4ID0gNjAsIGF5ID0gMCwKICAgICAgICAgICAgICAgZm9udCA9IGxpc3QoY29sb3IgPSAiZGFya2dyZWVuIiwgc2l6ZSA9IDE2KSwKICAgICAgICAgICAgICAgYXJyb3djb2xvciA9ICJ3aGl0ZSIsIGFycm93c2l6ZSA9IDEsIGFycm93d2lkdGggPSAwLjEsYXJyb3doZWFkID0gMSksCiAgICAgICAgICAgICBsaXN0KAogICAgICAgICAgICAgICB4ID0gMi41LCB5ID0gNC41LCB6ID0gMCwKICAgICAgICAgICAgICAgdGV4dCA9IFRlWCgic18wIiksCiAgICAgICAgICAgICAgIHRleHRhbmdsZSA9IDAsIGF4ID0gMCwgYXkgPSAxNSwKICAgICAgICAgICAgICAgZm9udCA9IGxpc3QoY29sb3IgPSAiYmxhY2siLCBzaXplID0gMTYpLAogICAgICAgICAgICAgICBhcnJvd2NvbG9yID0gIndoaXRlIiwgYXJyb3dzaXplID0gMSwgYXJyb3d3aWR0aCA9IDAuMSxhcnJvd2hlYWQgPSAxKSkpKSAlPiUKICBhZGRfdHJhY2UoeCA9IHh5cG9pbnRzW3Jvd251bWJlciwgMl0sIHkgPSB4eXBvaW50c1tyb3dudW1iZXIsIDFdLCB6ID0gMCwgbW9kZSA9ICJtYXJrZXJzIiwgdHlwZSA9ICJzY2F0dGVyM2QiLAogICAgICAgICAgICBtYXJrZXIgPSBsaXN0KHNpemUgPSA0LCBjb2xvciA9ICJibGFjayIsIHN5bWJvbCA9IDEwNCkpCiMgU2F2ZSB0aGUgM0QgcGxvdApzYXZlKHAsIGZpbGUgPSBoZXJlKCJkYXRhX2ZpbGVzLzNkX2Nvdl9wbG90c19kaWZmX251LlJEYXRhIikpCmBgYAoKCmBgYHtyLCBmaWcuaGVpZ2h0ID0gOCwgb3V0LndpZHRoID0gIjEwMCUiLCBmaWcuY2FwID0gY2FwdGlvbmVyKCJFeGFtcGxlIG9mIGNvdmFyaWFuY2UgZnVuY3Rpb25zICRyX1xcbnUoXFxjZG90KSQgZm9yIGRpZmZlcmVudCBzbW9vdGhuZXNzIHBhcmFtZXRlciAkXFxudSQgb24gdGhlIGBNZXRyaWNHcmFwaGAgcGFja2FnZSdzIGxvZ28uIil9CiMgUHJpbnQgdGhlIDNEIHBsb3QKcApgYGAKCkhlcmUgYSBsaXN0IG9mIHRoZSBwYWNrYWdlcyB1c2VkIGluIHRoaXMgZG9jdW1lbnQuCgpgYGB7cn0KY2l0ZV9wYWNrYWdlcyhvdXRwdXQgPSAicGFyYWdyYXBoIiwgb3V0LmRpciA9ICIuIikKYGBgCg==